Kernel density estimation applications in vessel extraction for MRA images

  • سال انتشار: 1404
  • محل انتشار: مجله روشهای محاسباتی برای معادلات دیفرانسیل، دوره: 13، شماره: 1
  • کد COI اختصاصی: JR_CMDE-13-1_014
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 120
دانلود فایل این مقاله

نویسندگان

Tohid Bahrami

Department of Statistics, Faculty of Mathematics, Statistics and Computer Science, University of Tabriz, Iran.

Hossein Jabbari Khamnei

Department of Statistics, Faculty of Mathematics, Statistics and Computer Science, University of Tabriz, Iran.

Golam Kibria

Department of Mathematics and Statistics, Florida International University, FIU, Miami, USA.

چکیده

Vascular-related diseases have become increasingly significant as public health concerns. The analysis of blood vessels plays an important role in detecting and treating diseases. Extraction of vessels is a very important technique in vascular analysis. Magnetic Resonance Angiography (MRA) is a medical imaging technique used to visualize the blood vessels and vascular system in three-dimensional images. These images provide detailed information about the size and shape of the vessels, any narrowing or stenosis, as well as blood supply and circulation in the body. Tracing vessels from medical images is an essential step in the diagnosis and treatment of vascular-related diseases. Many different techniques and algorithms have been proposed for vessel extraction. In this paper, we present a vessel extraction method based on the Kernel density estimation (KDE). Numerical experiments on real ۲D MRA images demonstrate that the presented method is very efficient. The effectiveness of the proposed method has been proven through comparative analysis with validated existing methods.

کلیدواژه ها

vessel extraction, Kernel density estimation, MRA images, bandwidth selection

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.