Novel Multi-Input Bi-Directional Hybrid System to Manage Electric Vehicles in V2G and Plug-In Modes
سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 864
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PEDSTC03_069
تاریخ نمایه سازی: 25 شهریور 1392
چکیده مقاله:
Today’s life and industry are closely dependent to the electrical energy. This dependency in future will be more intensive, especially due to appearance of electric-dependentvehicles in the societies overriding conventional fossil fuelbased vehicles. Electric and hybrid electric vehicles (EV/HEVs)carry storage devices (usually electric batteries) to store their electrical energy demand. Their batteries have charging and discharging capabilities. Emergence of EV/HEVs in citiesamounts to addition of considerable large electrical loads to the electrical grid. On the other hand, extra energy in thesevehicles when not needed is considered as a promising source of energy that could be harvested and utilized to support the grid. Power electronic converters (PECs) as electric interfaceshave the capability to manage the power flow between EV/HEVs and the grid. In this work, a novel multi input (MI)bidirectional DC/DC converter/capacitive storage hybrid system (MIBHS) including MI Buck-Boost PEC (MIBB-PEC) and capacitive storage system is proposed that is able to handlewith several EV/HEVs in vehicle to grid (V2G) and Plug-In modes of operation. Switching strategies are proposed tooperate the converter in Plug-In and V2G modes. Steady state practical model of the converter is derived, and two algorithmsbased on power management strategy in forms of flowchart diagrams are presented. Then, probabilistic situations in terms of Plug-In and V2G EV/HEVs are investigated. Finally simulations are run in PSCAD/EMTDC.
کلیدواژه ها:
نویسندگان
Saeed Rezaee
Shiraz University
Ebrahim Farjah
Shiraz University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :