Estimating Penetration Rate of Excavation Machine Using Geotechnical Parameters and Neural Networks in Tabriz Metro
- سال انتشار: 1402
- محل انتشار: فصلنامه روش های تحلیلی و عددی در مهندسی معدن، دوره: 13، شماره: 37
- کد COI اختصاصی: JR_ANM-13-37_001
- زبان مقاله: فارسی
- تعداد مشاهده: 106
نویسندگان
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
چکیده
In this study, the penetration rate of the excavation machine in Tabriz Metro Line ۲ using geotechnical parameters and neural networks is estimated. For this purpose, through comprehensive analysis, including borehole drilling, field and laboratory tests, and consideration of similar projects, the geotechnical parameters for soil and rock layers have been determined. Preprocessing data techniques, such as normalization, have been applied to address challenges such as noise and bias in raw data. Also, neural networks with varying architectures were evaluated using mean square error and correlation coefficient as evaluation metrics. The architecture (۱-۱۲-۸) of this research demonstrates superior performance with a mean square error of ۱.۶۳۰ and a correlation coefficient of ۰.۹۳۲. This shows a strong relationship between predicted and actual penetration rate values. The findings of this research highlight the effectiveness of neural networks in estimating the penetration rate. Accurate estimations of the non-linear penetration rate were achieved by employing a single-layer neural network with multiple neurons using appropriate transfer functions. Overall, this research contributes to the understanding of geotechnical considerations for urban train routes and demonstrates the accuracy of neural networks for penetration rate estimation. These insights have implications for the design and engineering of similar projects.کلیدواژه ها
Tunnelling, Mechanized excavation, Neural networks, Geotechnical parameters, Penetration rateاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.