An Innovative Unbalanced ANOVA-Based Approach for Multi-Dimensional Feature Evaluation in Brain-Computer Interface Classification
- سال انتشار: 1402
- محل انتشار: دوازدهمین همایش ملی و سومین همایش بین المللی بیوانفورماتیک
- کد COI اختصاصی: IBIS12_097
- زبان مقاله: انگلیسی
- تعداد مشاهده: 102
نویسندگان
Department of Biomedical Engineering, AmirKabir University of Technology
Department of Electrical Engineering, Shahid Beheshti University of Technology
Department of Biomedical Engineering, AmirKabir University of Technology
Department of Biomedical Engineering, AmirKabir University of Technology
چکیده
Brain-computer interface (BCI) stands as a crucial tool in processing, and facilitatingcommunication with intellectually disabled individuals by leveraging brain characteristics through EEGsignal analysis. Effective classification, however, necessitates the use of suitable features. Commonlyemployed tools for evaluating selected features include Fisher Score, MI, and DBI. While these methodssequentially determine the best features, the BCI field predominantly relies on features derived fromthe Common Spatial Pattern (CSP) method, utilizing matrix decomposition under eigenvalues andvectors. Yet, the ordinal mode of CSP's feature selection may not consistently minimize classificationerrors for feature vectors exceeding two dimensions. To address this, we propose a measure based onANOVA statistical analysis of variance, capable of evaluating diverse features, including multidimensionalvectors. In this research, we applied this measure to BCI Competition III and Part Iva datafor simulation. With two classes, hand and leg movement imagery unlabeled data segments wereomitted. Our analysis considered variations in subjects, classes, and trials, addressing the imbalancecaused by noise and motion factors in BCI data. Utilizing UF-ANOVA variance analysis, we evaluatedfeatures extracted from the CSP algorithm. Mahalanobis Distance gauged the distance of each featurevector from the first-class distribution. UF-ANOVA results yielded three F factorial values (۲ each forclass changes, subject changes, and interaction changes), forming the basis for our criterion and indexdefinitions related to factorial class, factorial interaction, and the opposite of factorial subject. Theobtained p-values for all three cases were remarkably low, underscoring the significance ofcharacteristic data related to subject changes, hand or foot movement perception, and their interaction.This novel ANOVA-based measure demonstrates its versatility by accommodating multi-dimensionalfeature vectors, offering a robust approach to feature evaluation in the dynamic domain of BCI.کلیدواژه ها
UF-ANOVA variance analysis; Multi-dimensional feature vectors; Feature selection; Brain-Computer Interfaceمقالات مرتبط جدید
- Resource Optimization in Large Language Model Deployment Using Reinforcement Learning and Adaptive Software Engineering
- کاربرد یادگیری ماشین در پیشبینی خطاهای نرم افزاری در مراحل اولیه توسعه سیستم های پیچیده
- A review of the application of silver nanoparticles in improving the performance of ultrathin silicon solar cells
- نگرشی برنانو و نقش آن در تصفیه آب در نیروگاه های برق
- The Biomechanical Effect of Knee Flexion Angles on Squat Lifting with a Flat Back Position
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.