Multi-Omics Integration for Pancreatic Adenocarcinomas Subtyping

  • سال انتشار: 1402
  • محل انتشار: دوازدهمین همایش ملی و سومین همایش بین المللی بیوانفورماتیک
  • کد COI اختصاصی: IBIS12_065
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 103
دانلود فایل این مقاله

نویسندگان

F Dorri-Najafabadi

Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran

M Emadi-Baygi

Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran

M Lotfi-Shahreza

Department of Computer Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran

چکیده

Cancer is a leading cause of death worldwide. Precision oncology aims to identify newmolecule-based cancer subtypes from large-scale cancer multi-omics data(۱), allowing for moreaccurate and personalized treatments. Multi-omics studies analyze high-dimensional datasets at variouslevels to reveal the complexity of cells and their environment(۲). Integrating multi-omics data hasbecome increasingly important, with machine learning playing a key role in comparing and identifyingpatterns in biological data(۳). Our study utilized multi-omics data, including transcriptomics RNAsequencing,DNA methylation, and gene mutations, to identify three molecular subtypes and assesssample similarity within the subtypes. We applied various pre-processing steps, including annotation,quality control, filtering, normalization, and feature selection. Then, we executed ten classical clusteringalgorithms to recognize patients with different molecular features using the "MOVICS" package in R.We filtered out low express genes, noncoding genes, and removed probes with detection P value > ۰.۰۱,all non-CpG probes, all SNP-related probes, all multi-hit probes, and probes located on sexchromosomes. Finally, we identified three molecular subtypes and quantified the sample similaritywithin the subtypes using the silhouette score. Our study highlights the importance of multi-omicsintegration and pre-processing steps in understanding molecular subtypes. The use of the "MOVICS"package in R provides an accessible and powerful toolset for researchers to analyze multi-omics data.Integrating multi-omics and clinical data can help identify robust and clinically actionable cancersubtypes. We hope that our findings will contribute to the development of more effective cancertherapies and personalized medicine.

کلیدواژه ها

Multi-Omics; Cancer Subtyping; Pancreatic Adenocarcinoma; MOVICS

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.