Enhancing Heart Failure Prediction Accuracy through Effective Preprocessing andPrincipal Component Analysis
عنوان مقاله: Enhancing Heart Failure Prediction Accuracy through Effective Preprocessing andPrincipal Component Analysis
شناسه ملی مقاله: IBIS12_003
منتشر شده در دوازدهمین همایش ملی و سومین همایش بین المللی بیوانفورماتیک در سال 1402
شناسه ملی مقاله: IBIS12_003
منتشر شده در دوازدهمین همایش ملی و سومین همایش بین المللی بیوانفورماتیک در سال 1402
مشخصات نویسندگان مقاله:
A Dibaji - Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
S Sulaimany - Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
خلاصه مقاله:
A Dibaji - Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
S Sulaimany - Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
Accurate prediction of heart failure is crucial for early intervention and preventative care.This study aims to improve prediction accuracy using a Heart Failure Prediction dataset of ۲۹۹ sampleswith ۱۲ distinct features and a target variable. We addressed data imbalance using the NearMissalgorithm and normalized the data to ensure uniformity. Subsequently, Principal Component Analysis(PCA) was used to distill the dataset to ۷ principal features, which, when aggregate with the originalfeatures, formed a restructured dataset. Several machine learning models were evaluated, and therandom forest algorithm emerged as the most accurate, achieving an ۸۳.۵% prediction success rate. Thisoutcome not only represents a significant improvement over previous studies [۱] but also highlights theimportance of meticulous preprocessing and feature optimization in predictive modeling.
کلمات کلیدی: Heart Failure Prediction; PCA; Machine Learning; Preprocessing; Random Forest
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/2108434/