CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Enhancing Heart Failure Prediction Accuracy through Effective Preprocessing andPrincipal Component Analysis

عنوان مقاله: Enhancing Heart Failure Prediction Accuracy through Effective Preprocessing andPrincipal Component Analysis
شناسه ملی مقاله: IBIS12_003
منتشر شده در دوازدهمین همایش ملی و سومین همایش بین المللی بیوانفورماتیک در سال 1402
مشخصات نویسندگان مقاله:

A Dibaji - Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
S Sulaimany - Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran

خلاصه مقاله:
Accurate prediction of heart failure is crucial for early intervention and preventative care.This study aims to improve prediction accuracy using a Heart Failure Prediction dataset of ۲۹۹ sampleswith ۱۲ distinct features and a target variable. We addressed data imbalance using the NearMissalgorithm and normalized the data to ensure uniformity. Subsequently, Principal Component Analysis(PCA) was used to distill the dataset to ۷ principal features, which, when aggregate with the originalfeatures, formed a restructured dataset. Several machine learning models were evaluated, and therandom forest algorithm emerged as the most accurate, achieving an ۸۳.۵% prediction success rate. Thisoutcome not only represents a significant improvement over previous studies [۱] but also highlights theimportance of meticulous preprocessing and feature optimization in predictive modeling.

کلمات کلیدی:
Heart Failure Prediction; PCA; Machine Learning; Preprocessing; Random Forest

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/2108434/