BNPL-Dataset: A New Benchmark Dataset for Visual Disease Detection of Barberry, Jujube, and Pomegranate Trees

  • سال انتشار: 1403
  • محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 12، شماره: 2
  • کد COI اختصاصی: JR_JADM-12-2_008
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 189
دانلود فایل این مقاله

نویسندگان

Jalaluddin Zarei

Electrical and Computer Engineering Faculty, University of Birjand, Birjand, Iran.

Mohammad Hossein Khosravi

Electrical and Computer Engineering Faculty, University of Birjand, Birjand, Iran.

چکیده

Agricultural experts try to detect leaf diseases in the shortest possible time. However, limitations such as lack of manpower, poor eyesight, lack of sufficient knowledge, and quarantine restrictions in the transfer of diseases to the laboratory can be acceptable reasons to use digital technology to detect pests and diseases and finally dispose of them. One of the available solutions in this field is using convolutional neural networks. On the other hand, the performance of CNNs depends on the large amount of data. While there is no suitable dataset for the native trees of South Khorasan province, this motivates us to create a suitable dataset with a large amount of data. In this article, we introduce a new dataset in ۹ classes of images of Healthy Barberry leaves, Barberry Rust disease, Barberry Pandemis ribeana Tortricidae pest, Healthy Jujube leaves, Jujube Ziziphus Tingid disease, Jujube Parenchyma-Eating Butterfly pest, Healthy Pomegranate leaves, Pomegranate Aphis punicae pest, and Pomegranate Leaf-Cutting Bees pest and also check the performance of several well-known convolutional neural networks using all gradient descent optimizer algorithms on this dataset. Our most important achievement is the creation of a dataset with a high data volume of pests and diseases in different classes. In addition, our experiments show that common CNN architectures, along with gradient descent optimizers, have an acceptable performance on the proposed dataset. We call the proposed dataset ”Birjand Native Plant Leaves (BNPL) Dataset”. It is available at the address https://kaggle.com/datasets/ec۱۷۱۶۲ca۰۱۸۲۵fb۳۶۲۴۱۹۵۰۳cbc۸۴c۷۳d۱۶۲bffe۹۳۶۹۵۲۲۵۳ed۵۲۲۷۰۵۲۲۸e۰۶.

کلیدواژه ها

Plant Disease Visual Dataset, disease detection, Barberry, Jujube, Pomegranate

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.