الگوریتم بهبودیافته گرگ خاکستری مبتنی بر شرایط برای حل مسائل بهینه سازی سراسری

  • سال انتشار: 1401
  • محل انتشار: مجله رایانش نرم و فناوری اطلاعات، دوره: 11، شماره: 2
  • کد COI اختصاصی: JR_JSCIT-11-2_003
  • زبان مقاله: فارسی
  • تعداد مشاهده: 109
دانلود فایل این مقاله

نویسندگان

Safora Akhavan-Nasab

Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Zahra Beheshti

Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

چکیده

بسیاری از مسائل بهینه سازی دنیای واقعی، مسائلی پیچیده با ابعاد بالا هستند که با افزایش ابعاد، فضای جواب به صورت نمایی افزایش می یابد. از این رو الگوریتم های دقیق که تمام فضای مساله را برای یافتن جواب پیمایش می کنند، در زمان قابل قبولی نمی-توانند به جواب دست یابند و از الگوریتم های تقریبی برای حل این مسائل استفاده می شوند. از دسته این الگوریتم ها، می توان به الگوریتم های فراابتکاری اشاره کرد که نشان داده اند کارایی خوبی دارند. الگوریتم بهینه سازی گرگ خاکستری از جمله ی این الگوریتم ها است. اما ساختار الگوریتم، توانایی اکتشاف آن را برای حل مسائل پیچیده با ابعاد بالا محدود می کند و در اواسط اجرای الگوریتم ممکن است به دام بهینه های محلی گرفتار گردد. در این حالت به تدریج تنوع جمعیت کم می گردد و در برخی موارد قادر به فرار از این بهینه های محلی نیست و دچار همگرایی زودرس می گردد. از این رو، در این تحقیق، نسخه بهبود یافته ای از الگوریتم گرگ خاکستری به نام الگوریتم بهینه سازی گرگ خاکستری مبتنی بر شرایط ارائه می گردد، که با جداسازی مرحله اکتشاف از بهره برداری و فراهم آوردن امکان فرار از بهینه های محلی در هر تکرار، همچنین بهبود توازن بین اکتشاف و بهره برداری، راه حل های جدیدی ارائه می دهد که در صورت بهتر بودن جایگزین راه حل های قبلی می شوند. الگوریتم پیشنهادی با چند نسخه از الگوریتم های بهبود یافته گرگ خاکستری، همچنین الگوریتم های بهینه سازی ازدحام ذرات، کفتار خالدار، شاهین هریس، اسب وحشی، عقاب و کرکس آفریقایی که از جمله الگوریتم های فراابتکاری بسیار جدید هستند، برای یافتن نقاط بهینه در توابع بهینه سازی CEC۲۰۱۸ و پارامترهای مساله مهندسی طراحی مخزن فشار مقایسه شده است. نتایج ارزیابی، حاکی از بهبود قابل توجه نتایج الگوریتم پیشنهادی نسبت به سایر الگوریتم های مورد مقایسه است.

کلیدواژه ها

meta, heuristic Algorithm: Gray Wolf Optimizer (GWO) : Exploration: Exploitation: Local Optimum: Global Optimum

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.