A step forward In Satellite Remote Sensing (SRS) Data Interpolation for Mineral Exploration Objectives with Python

  • سال انتشار: 1403
  • محل انتشار: هشتمین کنفرانس بین المللی توسعه فناوری مهندسی مواد، معدن و زمین شناسی
  • کد COI اختصاصی: EMGBC08_018
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 138
دانلود فایل این مقاله

نویسندگان

Amirmohammad Abhary

School of Mining Engineering, College of Engineering, University of Tehran, Iran.

Golnaz Jozanikohan

Assistant professor, School of Mining, College of Engineering, University of Tehran

Maysam Abedi

Petroleum Engineering and Geophysics Laboratory (PEG-Lab), School of Mining Engineering, Faculty of Engineering, University of Tehran, Iran

Mahmoud Reza Delavar

Center of Excellence in Geomatic Eng. in Disaster Management and Land Administration in Smart City Lab., School of Surveying and Geospatial Eng., College of Engineering, University of Tehran, Tehran, Iran

چکیده

The utilization of Python in Satellite Remote Sensing (SRS) data interpolation has significantly transformed the landscape of mineral exploration. This article delves into the innovative applications of Python spatial libraries in processing SRS data, enabling enhanced analysis and interpretation for mineral exploration endeavors. Python's versatility, coupled with its extensive array of libraries, has positioned it as a powerhouse in the earth sciences domain, particularly in the realm of mineral exploration. Interdisciplinary collaboration plays a pivotal role in maximizing Python's potential in mineral exploration. By fostering collaboration among experts from diverse fields such as geology, remote sensing, and computer science, holistic approaches to mineral exploration can be developed. This collaborative synergy not only enhances the robustness of interpolation techniques but also integrates domain-specific knowledge into the analysis process, leading to more informed decision-making. The article highlights the critical role of Python in empowering researchers to extract valuable insights from satellite imagery, facilitating advanced visualization and spatial analysis methods. Through the development of standardized data formats, processing pipelines, and user-friendly interfaces, Python-based interpolation techniques become more accessible to non-experts, further democratizing the utilization of advanced geospatial tools in mineral exploration. Moreover, ongoing research efforts are essential to refine existing algorithms, explore novel methodologies, and validate results through ground truthing and field validation exercises. The collaborative nature of Python development fosters innovation and knowledge sharing across disciplinary boundaries, paving the way for new discoveries and advancements in the earth sciences. Briefly, the interdisciplinary appeal of Python, as evidenced by its key contributors and development process, underscores its significance in mineral exploration. As technology continues to evolve, Python's role in interpreting satellite imagery for mineral exploration purposes will only grow, emphasizing the importance of interdisciplinary collaboration for driving progress in the earth sciences.

کلیدواژه ها

Python, Satellite Remote Sensing (SRS), Mineral Exploration, Spatial Analysis, Data Interpolation.

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.