Advancing big data clustering with fuzzy logic-based IMV-FCA and ensemble approach

  • سال انتشار: 1403
  • محل انتشار: مجله سیستم های فازی، دوره: 21، شماره: 2
  • کد COI اختصاصی: JR_IJFS-21-2_010
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 170
دانلود فایل این مقاله

نویسندگان

Lakshmi Srinivasulu Dandugala

Research Scholar, Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India

Koneru Suvarna Vani

Department of Computer Science and Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Kanuru, Vijayawada, Andhra Pradesh.

چکیده

The act of gathering, looking over, and analyzing a lot of data to find patterns, insights, and market trends that canhelp businesses make more effective choices is known as big data analysis (BDA). Quick and effective access to thisdata allows businesses to be flexible in developing strategies to hold onto their competitive edge. To analyze massiveamounts of data quickly through parallel processing, the structure of the Hadoop software employs the MapReducemethodology. Computational solid resources are necessary for BDA, although they are not always available. Developingnew clustering techniques that could handle this kind of data processing became crucial. Therefore, in this research,we presented a novel, effective fuzzy-based Improved Multiview Fuzzy C-Means Algorithm (IMV-FCA) to boost theclustering strategy. To summarize, fuzzy-based IMV-FCA clustering presents the ensemble of the MobileNet V۲ model,and three-layered stacked Bidirectional LSTM (MVSBiLSTM) to increase computing speed and effectiveness. It alsopresents a function that calculates the separation among the cluster center and the particular instance, to assist withbetter clustering. By simulating shared memory space and parallelizing on the framework known as MapReduce onthe Hadoop cloud computing platform, the distributed database is utilized to improve the method’s effectiveness whilereducing its time complexities. The experimental investigation was conducted on existing approaches, and the proposedapproach was analyzed using three standard datasets. While differentiating from existing approaches, the presentedapproach yields greater performances in terms of various metrics.

کلیدواژه ها

Big data analytics (BDA), Hadoop, Cloud Computing, Fuzzy based energy efficient clustering, MobileNet V۲, Mapreduce

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.