Multimodal Biomedical Image Segmentation by Using Multi-Path U-Net

  • سال انتشار: 1404
  • محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 1
  • کد COI اختصاصی: JR_IJE-38-1_017
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 99
دانلود فایل این مقاله

نویسندگان

H. Farsi

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

S. Noursoleimani

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

S. Mohamadzadeh

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

A. Barati

Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

چکیده

Early detection of skin lesions is essential for the success of treatment depending on the earliest possible detection of skin cancer lesions. Segmentation of skin cancer lesions is one of the most important early steps. In this regard, classic U-Net which is based on deep neural networks is the most popular architecture for medical image segmentation. However, the classic U-Net architecture lacks certain aspects. In this approach, we proposed a lightweight model designed to minimize memory usage in the deeper network layers and to reduce training and testing time. We achieved this by leveraging Multi-Level Blocks, which exclusively utilized ۳x۳ convolution operations. Additionally, we have utilized multiple convolutions to facilitate the transfer of information from the encoding to the decoding stage. This approach aims to minimize the semantic gap between the two stages. We have termed this information transfer path the encoder-decoder path. Our method has demonstrated outstanding performance in key metrics when tested on the PH۲ dataset and has shown superior performance in terms of Accuracy and Jaccard Index on the ISIC-۲۰۱۷ dataset compared to the latest methods reported in existing publications. The Multi-Path U-Net method effectively recognizes and precisely segments complex features such as weak boundaries, shape, and color irregularities, and multi-part lesions with diverse color intensities.

کلیدواژه ها

skin lesion segmentation, U-Net, Convolutional Neural Networks, Medical images

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.