مدل سازی زمانی و مکانی بارش با استفاده از MLR، ANN و الگوریتم هیبریدی HBA-ANN
- سال انتشار: 1403
- محل انتشار: فصلنامه مدل سازی و مدیریت آب و خاک، دوره: 4، شماره: 3
- کد COI اختصاصی: JR_MMWS-4-3_007
- زبان مقاله: فارسی
- تعداد مشاهده: 86
نویسندگان
دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
دانش آموخته کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
چکیده
مدل سازی و برآورد بارندگی، یکی از مسائل مهم و اساسی در زمینه هیدرولوژی است. به منظور کاهش خطا در زمینه مدل سازی از الگوریتم های جدید و متنوعی که در علوم مهندسی و کامپیوتر ارائه شده اند، استفاده می شوند. این موضوع در هیدرولوژی بسیار کارآمد است. این الگوریتم ها به منظور دست یابی به یک جواب بهینه، به تعداد کمی تکرار نیاز دارند و همین امر موجب افزایش سرعت در رسیدن به نتایج مورد نظر می شود. در این پژوهش از سه مدل MLR، ANN و هیبرید HBA-ANN به منظور مدل سازی زمانی و مکانی بارش استان آذربایجان شرقی طی بازه زمانی ۲۰۲۲ -۱۹۹۶ استفاده شد. بدین منظور، در مرحله اول از گام های تاخیر زمانی یک ماهه و دو ماهه بارش، به عنوان متغیر ورودی در مدل سازی زمانی و در مرحله دوم از متغیرهای طول جغرافیایی، عرض جغرافیایی و ارتفاع جغرافیایی به عنوان متغیر ورودی در مدل سازی مکانی استفاده شد. جهت بررسی عملکرد تکنیک های مورد استفاده در پژوهش از پنج شاخص آماری RMSE، R،NRMSE ،NSE ،MBE استفاده شد. علاوه براین، برای برآورد مقدار بارش در مناطقی از استان که فاقد ایستگاه باران سنجی هستند از روی داده های ایستگاه های موجود، از روش های درون یابی هم باران و پلیگون تیسن استفاده شد. در نهایت، طبق نتایج به دست آمده از هر سه مدل در مدل سازی زمانی، هیبرید HBA-ANN عملکرد بهتری نسبت به مدل های MLR و ANN از خود نشان داد. هم چنین، باتوجه به نتایج مدل هیبریدی HBA-ANN، ایستگاه هریس با R برابر با ۹۴/۰ و RMSE برابر با ۲۵/۲ و ضریب NSE برابر با ۷۹/۰ و NRMSE برابر با ۰۴/۰ و MBE برابر با ۰۶/۱ در مرحله آزمون عملکرد بهتر نسبت به سایر ایستگاه ها در مرحله آزمون ارائه داد. براساس نتایج به دست آمده از مدل سازی مکانی، مدل هیبریدی HBA-ANN با R برابر با ۹۵/۰، RMSE برابر با ۰۳/۱، NSE برابر با ۹۲/۰، NRMSE برابر با ۰۳/ ۰ و MBE برابر با ۸۱/۰- دقت قابل توجهی در مدل سازی مکانی بارش از خود نشان داد و مجددا به عنوان مدل پیشنهادی انتخاب می شود. در این پژوهش، باتوجه به دقت بالای مدل هیبریدی HBA-ANN در مطالعات آتی پیشنهاد می شود، از این مدل در زمینه مدل سازی تبخیر، دما و غیره استفاده و نتایج ارزیابی شود.کلیدواژه ها
پولیگون تیسن, رگرسیون خطی چندگانه, شبکه عصبی مصنوعی, منحنی هم باران, هیبرید شبکه عصبی مصنوعی و گورکن عسل خواراطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.