Artificial Neural Network Approaches for Predicting the Heat Transfer in a Mini-Channel Heatsink with Alumina/Water Nanofluid

  • سال انتشار: 1403
  • محل انتشار: مجله تحقیقات انتقال حرارت و توده، دوره: 11، شماره: 1
  • کد COI اختصاصی: JR_JHMTR-11-1_007
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 166
دانلود فایل این مقاله

نویسندگان

Mohammad Mahdi Tafarroj

Mechanical Engineering Department, Faculty of Engineering, Lorestan University, P.O. Box ۶۸۱۵۱-۴۴۳۱۶, Khorramabad, Iran

Seyed Soheil Mousavi Ajarostaghi

Mechanical Engineering Department, Université de Sherbrooke, Sherbrooke, QC J۱K ۲R۱, Canada

C.J. Ho

Department of Mechanical Engineering, National Cheng-Kung University, Tainan ۷۰۱۰۱, Taiwan

Wei-Mon Yan

Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei ۱۰۶۰۸, Taiwan

چکیده

This work uses artificial neural networks to evaluate heat transfer in a mini-channel heatsink using an alumina/water nanofluid. The multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are employed for the modeling. To apply the artificial neural network analysis, ۶۰ data of experimental works are utilized. The outcomes depicted that the simulated annealing (SA) technique significantly increased the performance of the RBF network, although the optimal MLP structure was discovered by trial and error. The optimized RBF network carried over more data with less than ۲% errors as compared to the MLP. While the results of the MLP network showed that the average relative error for the test data set was ۲.۰۴۹۶%, this value was ۱.۴۱۷% for the RBF network. The modeling time is a significant determining element when choosing the optimal technique. The RBF network optimization took longer than ۶۰ minutes, even though all MLP structures were run ۱۰۰ times in less than ۱۵ minutes. In summary, artificial neural networks are effective instruments for simulating these kinds of processes, and their application can save a lot of time-consuming experimentation. Additionally, the RBF network outperforms the MLP in terms of precision while requiring less processing time.

کلیدواژه ها

Artificial Neural Network (ANN), Mini-Channel Heatsink, Multilayer Perceptron, Radial basis function, Simulated Annealing

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.