Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams

  • سال انتشار: 1394
  • محل انتشار: Journal of Rehabilitation in Civil Engineering، دوره: 3، شماره: 1
  • کد COI اختصاصی: JR_CIVLJ-3-1_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 83
دانلود فایل این مقاله

نویسندگان

Atieh Khajeh

M.S student, Department of Civil Engineering, University of Sistan and Baluchestan, zahedan, Iran

Seyed Roohollah Mousavi

Assistant Professor, Department of Civil Engineering, University of Sistan and Baluchestan, zahedan, Iran

Mehrollah Rakhshani Mehr

Assistant Professor, Department of Civil Engineering, University of Alzahra, Tehran, Iran

چکیده

A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical and geometrical parameters. These parameters contain Web width, Effective depth, Shear span to depth ratio, Concrete compressive strength, Main reinforcement ratio, Horizontal shear reinforcement ratio and Vertical shear reinforcement ratio.The ANFIS model is developed based on ۲۱۴ experimental database obtained from the literature. The data used in the present study, out of the total data, ۸۰% was used for training the model and ۲۰% for checking to validate the model. The results indicated that ANFIS is an effective method for predicting the shear strength of reinforced concrete (RC) deep beams and has better accuracy and simplicity compared to the empirical methods.

کلیدواژه ها

Shear strength, RC deep beams, Adaptive Neural Fuzzy Inference System (ANFIS)

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.