Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 79
فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-7-3_004
تاریخ نمایه سازی: 23 شهریور 1403
چکیده مقاله:
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction method. In most of the application areas of image processing, textural features provide more efficient information of image regions properties than other characteristics. In this research, three different algorithms were used to extract the feature vector and statistically analyzing the texture of six various types of asphalt pavement surface distresses. The first algorithm is based on the extraction of images second-order textural statistics utilizing gray level co-occurrence matrix in spatial domain. In second and third algorithms, the second-order descriptors of images local binary patterns were extracted in spatial and wavelet transform domain, respectively. The classification of the distress images based on a combination of K-nearest neighbor method and Mahalanobis distance, indicates that two stages arranging of the gray levels of the distress images edges by applying wavelet transform and local binary pattern (third algorithm) had a superior result in comparison with other algorithms in texture recognition and separation of pavement distresses. Classification performance accuracy of the distress images based on first, second and third feature extraction algorithms is ۶۱%, ۷۵% and ۹۷%, respectively.
کلیدواژه ها:
Pavement distress texture ، Computer vision ، Gray level co-occurrence matrix (GLCM) ، Local binary pattern (LBP) ، Wavelet Transform
نویسندگان
Reza Shahabian Moghaddam
M.Sc., Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Abolfazl Mohammadzadeh Moghaddam
Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Seyed Ali Sahaf
Assistant Professor, Department of Civil Engineering, Ferdowsi university of mashhad, Iran.
Hamid reza Pourreza
Professor, Department of Computer Engineering, Ferdowsi university of mashhad, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :