Developing GEP tree-based, Neuro-Swarm, and whale Optimization Models for evaluating Groundwater Seepage into Tunnels: A Case Study

  • سال انتشار: 1403
  • محل انتشار: مجله معدن و محیط زیست، دوره: 15، شماره: 4
  • کد COI اختصاصی: JR_JMAE-15-4_014
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 128
دانلود فایل این مقاله

نویسندگان

shirin Jahanmiri

Department of Mining Engineering, University of Kashan, Kashan, Iran

Ali Aalianvari

Department of Mining Engineering, University of Kashan, Kashan, Iran

Malihehe Abbaszadeh

Department of Mining Engineering, University of Kashan, Kashan, Iran

چکیده

Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and subsequent operational phases. Groundwater inflows, often perceived as rare geological hazards, can induce instability in the surrounding rock formations, leading to severe consequences such as injuries, fatalities, and substantial financial expenditures. The primary objective of this research is to explore the application of machine learning techniques to identify the most accurate method of forecasting tunnel water seepage. The prediction of water loss into the tunnel during the forecasting phase employed a tree equation based on gene expression programming (GEP). These results were compared with those obtained from a hybrid model comprising particle swarm optimization (PSO) and artificial neural networks (ANN). The Whale Optimization Algorithm (WOA) was selected and developed during the optimization phase. Upon contrasting the aforementioned methods, the Whale Optimization Algorithm demonstrated superior performance, precisely forecasting the volume of water lost into the tunnel with a correlation coefficient of ۰.۹۹. This underscores the effectiveness of advanced optimization techniques in enhancing the accuracy of groundwater inflow predictions and mitigating potential risks associated with tunneling activities.

کلیدواژه ها

tunnel Seepage, Groundwater, Optimization, meta-heuristic algorithms

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.