Mineral Prospectivity Modeling with Airborne Geophysics and Geochemistry Data: a Case Study of Shahr-e-Babak Studied Area, Southern Iran

  • سال انتشار: 1403
  • محل انتشار: مجله معدن و محیط زیست، دوره: 15، شماره: 4
  • کد COI اختصاصی: JR_JMAE-15-4_017
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 160
دانلود فایل این مقاله

نویسندگان

Moslem Jahantigh

Department of Mining Engineering, Faculty of Mine, AmirKabir University, Tehran, Iran

Hamid Reza Ramazi

Department of Mining Engineering, Faculty of Mine, AmirKabir University, Tehran, Iran

چکیده

The present paper gives out data-driven method with airborne magnetic data, airborne radiometric data, and geochemistry data. The purpose of this study is to create a mineral potential model of the Shahr-e-Babak studied area. The studied area is located in the south-eastern of Iran. The various evidential layers include airborne magnetic data, airborne radiometric data (potassium and thorium), lineament density map, cu geochemistry signature, and multi-variate geochemistry signature (PC۱). High magnetic anomalies, lineament structures, and alteration zones (K/Th) were derived from airborne geophysics data. Geochemistry signatures (Cu and PC۱) were derived from stream sediment data. The principal Component Analysis (PCA) as an unsupervised machine learning method and five evidential layers were used to produce a porphyry prospectivity model. As a result of this combination, mineral prospectivity model was produced. Then a plot of cumulative percent of the studied area versus pca prospectivity value was used to discrete high potential areas. Then to evaluate the ability of this MPM, the location of known cu indications was used. The results confirm an acceptable outcome for porphyry prospectivity modeling. Based on this model high-potential areas are located in south southwestern and eastern parts of the studied area.

کلیدواژه ها

Principal Component Analysis, aeromagnetic, airborne radiometric, Shahr-e-Babak, Porphyry

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.