Presenting the DistilBert Language Model for Obtaining Appropriate Feature Space inReport Generation for Medical Images

  • سال انتشار: 1403
  • محل انتشار: بیست و سومین کنفرانس بین المللی فناوری اطلاعات، کامپیوتر و مخابرات
  • کد COI اختصاصی: ITCT23_003
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 175
دانلود فایل این مقاله

نویسندگان

Raziyeh Taheri

Technical and Engineering Faculty, Shahrekord University, IRAN

Reza Rohani

Technical and Engineering Faculty, Shahrekord University, IRAN

Mohammad Ehsan Basiri

Technical and Engineering Faculty, Shahrekord University, IRAN

چکیده

increasing progress of science and the combination of two fields of computer vision and natural language processing,researchers have succeeded in producing medical reports, although they contained shortcomings such as the brevityof production reports; But it was a good foundation for helping doctors in the serious matter of treatment and it madethe process of diagnosing and treating diseases faster. Reporting for medical images is one of the emerging fields ofartificial intelligence, which despite extensive research in this field is still full of challenges and has become one ofthe active research fields. Our goal in this research is to take effective action to remove the limitations of medicalreporting so that we can have a more suitable feature space in the reporting process for Chest X-ray medical imagesand more complete and longer medical reports. We have used the DistilBert language model to obtain this appropriatefeature space in the production of medical reports. Then we evaluated our proposed model by using natural languagemeasurement criteria such as BLEU, ROUGE, and METEOR and we verified that our proposed model has workedwell and succeeded in producing more detailed medical reports.

کلیدواژه ها

attention mechanism, convolutional neural network, encoder-decoder framework, long short termmemory.

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.