Applications of Deep Learning in Magnetic Resonance-Based Image Processing
عنوان مقاله: Applications of Deep Learning in Magnetic Resonance-Based Image Processing
شناسه ملی مقاله: SECONGRESS02_027
منتشر شده در دومین کنگره بین المللی علوم، مهندسی و فن آوری های نو در سال 1403
شناسه ملی مقاله: SECONGRESS02_027
منتشر شده در دومین کنگره بین المللی علوم، مهندسی و فن آوری های نو در سال 1403
مشخصات نویسندگان مقاله:
Shayan Nalbandian - Department of Software, Northwestern Polytechnical University, Xi’An, Shaanxi, China
Amirreza Rouhbakhshmeghrazi - Department of Electronic Information, Northwestern Polytechnical University, Xi’An, Shaanxi, China
خلاصه مقاله:
Shayan Nalbandian - Department of Software, Northwestern Polytechnical University, Xi’An, Shaanxi, China
Amirreza Rouhbakhshmeghrazi - Department of Electronic Information, Northwestern Polytechnical University, Xi’An, Shaanxi, China
In the realm of handling vast amounts of digital data, deep learning algorithms are proving to be highly effective and promising. This has led to their widespread adoption as a substitute or complement to traditional model-based techniques in MR imaging research. There have been remarkable achievements in a variety of domains within MR image processing, including image reconstruction, quality improvement, parameter mapping, contrast transformation, and segmentation. With the rapid advancements in deep learning technology, there is a growing significance for its role in MR imaging research. This informative article explores the fundamental principles of deep learning and showcases its recent progress in various applications for MR image processing.
کلمات کلیدی: Deep Learning, Image Processing, Machine Learning, Computer Vision, Image Segmentation
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/2049511/