A Transformer-based Multimodal Approach For CyberbullyingDetection
- سال انتشار: 1403
- محل انتشار: هفتمین کنفرانس بین المللی مهندسی برق، کامپیوتر، مکانیک و هوش مصنوعی
- کد COI اختصاصی: EECMAI07_039
- زبان مقاله: انگلیسی
- تعداد مشاهده: 305
نویسندگان
Master, University of Zanjan, Iran
Ph.D. University of Zanjan, Iran.
چکیده
With the increase of interactions on the web and social media such as Twitter, a large amount of content is produced by users, and as a result, it has led to the continuous expansion of online harassment, insults, and attacks, which is called cyberbullying or internet harassment. Identifying texts containing internet harassment has become challenging in natural language processing tasks. Therefore, designing efficient methods to automatically identify such content has become integral to most social media platforms. In this study, we put forward several ALEBERT-based models to classify cyberbullying. To that end, we obtained data from Twitter and proposed the base model BPM, which solely utilizes the textual content of a tweet for categorization. Afterwards, we integrated social network relationships quantified by the number of friends and followers, the number of likes, as well as the number of retweets. We investigated the effect of individual features and their combinations on the performance of the principal model. Our findings demonstrate that incorporating user communication attributes can enhance the accuracy of the baseline model. Specifically, the BPM_LC_RC_FC model, which involves tweet content and all suggested features, resulted in the best overall accuracy and F۱-Score of ۹۸.۸۰ in comparison to previous methods. This promising outcome is noteworthy as it represents the first multimodal approach to cyberbullying classification.کلیدواژه ها
Cyberbullying, Internet Harassment, Social Media, Transformer, ALBERTمقالات مرتبط جدید
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.