An Effective Damage Identification Method Combining Double-Window Principal Component Analysis with AutoGluon

  • سال انتشار: 1403
  • محل انتشار: مجله مکانیک کاربردی و محاسباتی، دوره: 10، شماره: 3
  • کد COI اختصاصی: JR_JACM-10-3_009
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 121
دانلود فایل این مقاله

نویسندگان

Ge Zhang

Guangdong University of Technology, No. ۱۶۱ Yinglong Road, Tianhe District, Guangzhou ۵۱۰۰۰۶, P.R. China

Neng Wei

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou ۵۱۰۶۴۰, China

Ying Zhou

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou ۵۱۰۶۴۰, China

Licheng Zhou

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou ۵۱۰۶۴۰, China

Gongfa Chen

Guangdong University of Technology, No. ۱۶۱ Yinglong Road, Tianhe District, Guangzhou ۵۱۰۰۰۶, P.R. China

Zejia Liu

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou ۵۱۰۶۴۰, China

Bao Yang

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou ۵۱۰۶۴۰, China

Zhenyu Jiang

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou ۵۱۰۶۴۰, China

Yiping Liu

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou ۵۱۰۶۴۰, China

Liqun Tang

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou ۵۱۰۶۴۰, China

چکیده

In recent years, Double Window Principal Component Analysis (DWPCA) has been proposed. The spatial windows exclude damage-insensitive data from the analysis, while the temporal window improves the discrimination between healthy and damaged states. As a result, the DWPCA method exhibits higher sensitivity and resolution in damage identification compared to traditional PCA methods, as well as other traditional signal processing methods such as wavelet analysis. However, existing research on DWPCA has mainly focused on using the first-order eigenvector for damage identification, while the potential of higher order DWPCA eigenvectors remains unexplored. Therefore, the objective of this paper is to investigate the damage identification capabilities of higher-order DWPCA eigenvectors. Furthermore, we propose three types of damage-sensitive features based on DWPCA eigenvectors and use them as inputs to artificial intelligence (AI) algorithms for damage localization and quantification. The AI algorithms considered include AutoGluon and Transformer, which are powerful machine learning (ML) and deep learning (DL) algorithms proposed in recent years, respectively. In addition, classical ML algorithms such as Decision Tree (DT), Random Forest (RF) and Extreme Gradient Boost (XGBoost) are considered for comparison. Extensive benchmark experiments are performed and the numerical results obtained show that the combination of AutoGluon with DWPCA features achieves remarkable performance in terms of damage localization and quantification. This performance exceeds that of DT, RF, XGBoost and Transformer algorithms. Specifically, the prediction accuracies for damage localization and quantification exceed ۹۰%. These results highlight the great potential of integrating AutoGluon with DWPCA features, particularly by combining AutoGluon with the first and second DWPCA eigenvectors, for real-world applications in structural health monitoring.

کلیدواژه ها

Structural Health Monitoring, damage detection, machine learning algorithm, Principal component analysis

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.