Assessment of Trend and Seasonality in Road Accident Data: An Iranian Case Study

  • سال انتشار: 1392
  • محل انتشار: مجله بین المللی سیاست و مدیریت بهداشت، دوره: 1، شماره: 1
  • کد COI اختصاصی: JR_HPM-1-1_008
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 186
دانلود فایل این مقاله

نویسندگان

Alireza Razzaghi

Kerman Medical Students Research Center, Kerman University of Medical Sciences, Kerman, Iran

Abbas Bahrampour

Research Center for Social Determinants of Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Mohammad Reza Baneshi

Research Center for Modeling in Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Farzaneh Zolala

Regional Knowledge for HIV/AIDS Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

چکیده

Background Road traffic accidents and their related deaths have become a major concern, particularly in developing countries. Iran has adopted a series of policies and interventions to control the high number of accidents occurring over the past few years. In this study we used a time series model to understand the trend of accidents, and ascertain the viability of applying ARIMA models on data from Taybad city.   Methods This study is a cross-sectional study. We used data from accidents occurring in Taybad between ۲۰۰۷ and ۲۰۱۱. We obtained the data from the Ministry of Health (MOH) and used the time series method with a time lag of one month. After plotting the trend, non stationary data in mean and variance were removed using Box-Cox transformation and a differencing method respectively. The ACF and PACF plots were used to control the stationary situation. Results The traffic accidents in our study had an increasing trend over the five years of study. Based on ACF and PACF plots gained after applying Box-Cox transformation and differencing, data did not fit to a time series model. Therefore, neither ARIMA model nor seasonality were observed. Conclusion Traffic accidents in Taybad have an upward trend. In addition, we expected either the AR model, MA model or ARIMA model to have a seasonal trend, yet this was not observed in this analysis. Several reasons may have contributed to this situation, such as uncertainty of the quality of data, weather changes, and behavioural factors that are not taken into account by time series analysis.

کلیدواژه ها

Road Accident, Time Series, Trend, Seasonality, Assessment

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.