Using Deep Learning Models Based on WGAN: A Solution to Improve Melanoma Diagnosis in Dermoscopy Images

  • سال انتشار: 1403
  • محل انتشار: دهمین کنفرانس بین المللی وب پژوهی
  • کد COI اختصاصی: IRANWEB10_006
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 215
دانلود فایل این مقاله

نویسندگان

SeyedVahab Shojaedini

Associate Professor in Biomedical Engineering, Iran Research Organization for Science and Technology (IROST),Tehran, Iran

Reza Roghanizadeh

Master of Artificial Intelligence Engineering, Qazvin Islamic Azad University, Qazvin, Iran

Akbar Partovi

Master of Artificial Intelligence Engineering, Qazvin Islamic Azad University, Qazvin, Iran

چکیده

Melanoma is one of the types of cancerous skin lesions, where early detection is crucial to prevent patient mortality. One method for early detection of melanoma involves using dermoscopic images of skin lesions to train deep learning models, which can then be used to classify skin lesions in patients, including the diagnosis of melanoma. A significant limitation of deep learning models is their need for substantial amounts of labeled data. This article discusses data augmentation using the Wasserstein GAN (WGAN) network to overcome the issue of limited diversity in images generated by GAN networks (a problem known as Mode Collapse). By generating ۵,۰۰۰ high-quality synthetic images of the melanoma class and adding these images to the unbalanced HAM۱۰۰۰۰ dataset, an improved accuracy in diagnosing this disease was achieved using the pre-trained deep ResNet۵۰ model. The proposed model improved melanoma classification accuracy by ۱۰% without significantly altering the overall model accuracy. These results suggest that using the WGAN network for data augmentation can enhance the classification accuracy of melanoma.

کلیدواژه ها

Melanoma, Data Augmentation, GAN, WGAN, Pre-trained Deep Learning Model, Dermoscopy

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.