Automatic Metapath Generating In Heterogeneous Graphs for Representation Learning

  • سال انتشار: 1403
  • محل انتشار: دهمین کنفرانس بین المللی وب پژوهی
  • کد COI اختصاصی: IRANWEB10_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 322
دانلود فایل این مقاله

نویسندگان

Azadeh Beiranvand

PhD candidate, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran

Maryam Nadali

Master of Science student, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran

Arefeh Takhtkesh

Master of Science student, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran

Mehdi Vahidipour

Assistant Professor, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran

چکیده

In this article, the problem of learning representation in heterogeneous graphs is investigated. Due to the presence of different types of nodes and edges in this type of graphs, there are unique challenges that limit the possibility of using conventional graph representation techniques. The way of random walk in this type of graphs is different and they need a walking scheme or metapath to find the path. Specifying this scheme is one of the challenges of learning representation in heterogeneous graphs. In this article, an algorithm has been introduced that finds all possible metapath schema by taking an heterogeneous graph and finds the best metapath scheme by specifying the correct schema and checking them. Various experiments show that with a small sampling of the network in the form of short length, the most suitable scheme can be found automatically and it is shown that by changing the sampling size, the selected scheme is the best scheme and in terms of time only Runs in ۰.۰۰۷% of the time using long random walks.

کلیدواژه ها

Network embedding, Heterogeneous Representation learning, Latent Representations, random walk, metapath scheme.

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.