Struc۲vec+k: Structural Graph Embedding with Layer Aggregation

  • سال انتشار: 1403
  • محل انتشار: دهمین کنفرانس بین المللی وب پژوهی
  • کد COI اختصاصی: IRANWEB10_004
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 193
دانلود فایل این مقاله

نویسندگان

Ali Amini

MSc. Student, Electrical and Computer Engineering Faculty, University of Kashan, Kashan, Iran

Mahdiyeh Bidram

MSc. Student, Electrical and Computer Engineering Faculty, University of Kashan, Kashan, Iran

SeyedMahdi Vahidipour

Assistant Professor, Electrical and Computer Engineering Faculty, University of Kashan, Kashan, Iran.

Marziyeh Naeimi

MSc. Student, Electrical and Computer Engineering Faculty, University of Kashan, Kashan, Iran

چکیده

Graph representation learning aims to extract embedding vectors for graph nodes, such that similar nodes have close vectors in the embedding space. Existing methods often measure node similarity based on their common neighbors, which may overlook nodes with similar structures in different parts of the graph. We want to capture the structural similarity of nodes that are not adjacent in the graph. To this end, we propose struc۲vec+k, a new method that extends the basic struc۲vec method. The basic method considers two nodes to be structurally similar if their nodes in the first, second, third, and subsequent layers are similar. The proposed method also takes into account the connection between layers, and aggregates the information of two consecutive layers. For instance, for the second layer, the information of the first- and second-layer nodes are aggregated. This aggregation is based on the inter-layer connections. The aggregation can be done up to the k -th layer, which explains the name of the method. We show that the proposed method achieves good accuracy in numerical experiments.

کلیدواژه ها

Node Embedding, Structural Embedding, struc۲vec, Aggregation of Layers

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.