Improving the DeepWalk Algorithm for Link Prediction In Social Networks
- سال انتشار: 1403
- محل انتشار: دهمین کنفرانس بین المللی وب پژوهی
- کد COI اختصاصی: IRANWEB10_002
- زبان مقاله: انگلیسی
- تعداد مشاهده: 285
نویسندگان
Master of data science, Department of Computer Engineering, University of Science and Culture, Tehran, Iran
Assistant professor, Department of Computer Engineering, University of Science and Culture, Tehran, Iran
چکیده
The increasing growth of social networks has drawn researchers' attention to link prediction, and it has been used in many fields, including computer science, information science, and anthropology. One of the newest link prediction methods is graph embedding methods, which are used to generate a feature vector for each node of the graph and find unknown links. The DeepWalk algorithm is one of the most popular graph embedding methods that captures the network structure using a random walk with equal probability. In this paper, a modified version of the DeepWalk algorithm is proposed, which uses a new random walk model to solve the link prediction problem. In fact, in the proposed method, the amount of structural similarity and the similarity of important features of nodes are combined. The results show that two nodes are more likely to form a link if they have similar structure and important features. To evaluate the proposed method, experiments have been conducted on five datasets. The test results indicate a relative improvement in the results obtained.کلیدواژه ها
Social network analysis, Link prediction, Graph embedding, Representation learning, Random walkمقالات مرتبط جدید
- طبقه بندی صفحات وب برای بهینه سازی موتورهای جستجو با استفاده از مدل ترکیبی یادگیری عمیق
- تحول دیجیتال با قراردادهای هوشمند بر پایه فناوری بلاکچین
- تحلیل و شناسایی آسیبپذیریهای ناش ی از حملات شرایط رقابتی در برنامه های وب مدرن
- مروری بر الگوریتم بهینه سازی ازدحام ذرات و کاربردها
- بهینه سازی زمانبندی و ذخیره سازی نتایج وظایف در محیطهای مه-ابر با یادگیری تقویتی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.