داده کاوی بر پایه روش های شبکه عصبی و درخت تصمیم در تشخیص زود هنگام ریسک ابتلا به دیابت بارداری
سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 79
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JHBMI-4-1_007
تاریخ نمایه سازی: 9 مرداد 1403
چکیده مقاله:
مقدمه: امروزه در دنیای مدرن صنعتی خطر ابتلا به بیماری های مزمن به طرز چشمگیری افزایش یافته است. دیابت بارداری یکی از مسائل مهم در حوزه سلامت است و در صورتی که درمان نشود مشکلات و عوارض جانبی متعددی برای مادر و فرزندش به همراه دارد. این پژوهش به دنبال پیش بینی ریسک و هشدار به موقع در ابتلا به دیابت بارداری به مادر می باشد تا در اوایل بارداری از ابتلا جلوگیری به عمل آید.
روش: این پژوهش که به صورت کاربردی- پیمایشی انجام شد و از دو رویکرد شبکه عصبی و درخت تصمیم در داده کاوی به منظور تجزیه وتحلیل آزمایشی داده ها و پیش بینی استفاده گردید. داده های استخراج شده نرمال سازی شده و پس از آماده سازی در نرم افزار Matlab تجزیه وتحلیل شدند.
نتایج: تحقیق حاضر در پی یافتن پاسخ به این پرسش است که"آیا دو روش داده کاوی شبکه عصبی و درخت تصمیم در تشخیص به هنگام و درست ریسک ابتلا به دیابت بارداری از صحت لازم برخوردار است ؟" و می توان از آن ها برای تشخیص درست استفاده نمود؟ نتایج تحقیق نشان می دهد که روش های داده مدار در بهبود صحت و درستی پیش بینی موثرند، در کشف دانش ضمنی و تشخیص روابط پنهان بین داده ها عملکرد مناسبی دارند و خطای تصمیم گیری در هر دو روش در حد قابل پذیرش و بسیار به هم نزدیک است .
نتیجه گیری: نتایج تحقیق حاکی از آن است که از رویکرد های داده مدار می توان در مراکز درمانی و سایر بیماری های کمتر شناخته شده استفاده نمود و پیشگیری به موقع ، مدیریت خود بیمار و کاهش هزینه های درمانی را میسر ساخت.
کلیدواژه ها:
Data mining ، Artificial Neural Network ، Decision Tree ، Gestational diabetes mellitus ، Diagnosis ، دادهکاوی ، شبکه های عصبی هوشمند ، درخت تصمیم ، دیابت بارداری ، تشخیص
نویسندگان
مریم میرشریف
MSc in Information Technology Management, Tehran University of Science and Research, Tehran, Iran.
سعید روحانی
tehran university
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :