Prediction of Fusion Rod Curvature Angles in Posterior Scoliosis Correction Using Artificial Intelligence

  • سال انتشار: 1403
  • محل انتشار: مجله استخوان و جراحی عمومی، دوره: 12، شماره: 7
  • کد COI اختصاصی: JR_TABO-12-7_006
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 137
دانلود فایل این مقاله

نویسندگان

Rasoul Abedi

Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

Nasser Fatouraee

Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

Mahdi Bostanshirin

Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

Navid Arjmand

Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Hasan Ghandhari

Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran

چکیده

Objectives: This study aimed to estimate post-operative rod angles in both concave and convex sides of scoliosis curvature in patients who had undergone posterior surgery, using neural networks and support vector machine (SVM) algorithms.Methods: Radiographs of ۷۲ scoliotic individuals were obtained to predict post-operative rod angles at all fusion levels (all spinal joints fused by rods). Pre-operative radiographical indices and pre-operatively resolved net joint moments of the apical vertebrae were employed as inputs for neural networks and SVM with biomechanical modeling using inverse dynamics analysis. Various group combinations were considered as inputs, based on the number of pre-operative angles and moments. Rod angles on both the concave and convex sides of the Cobb angle were considered as outputs. To assess the outcomes, root mean square errors (RMSEs) were evaluated between actual and predicted rod angles.Results: Among eight groups with various combinations of radiographical and biomechanical parameters (such as Cobb, kyphosis, and lordosis, as well as joint moments), RMSEs of groups ۴ (with seven radiographical angles in each case, which is greater in quantity) and ۵ (with four radiographical angles and one biomechanical moment in each case, which is the least possible number of inputs with both radiographical and biomechanical parameters) were minimum, particularly in prediction of the concave rod kyphosis angle (errors were ۵.۵° and ۶.۳° for groups ۴ and ۵, respectively). Rod lordosis angles had larger estimation errors than rod kyphosis ones.Conclusion: Neural networks and SVM can be effective techniques for the post-operative estimation of rod angles at all fusion levels to assist surgeons with rod bending procedures before actual surgery. However, since rod lordosis fusion levels vary widely across scoliosis cases, it is simpler to predict rod kyphosis angles, which is more essential for surgeons. Level of evidence: IV

کلیدواژه ها

Biomechanical modeling, Cobb angle, Neural Networks, posterior surgery, Rod kyphosis

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.