A new gated multi-scale convolutional neural network architecture for recognition of Persian handwritten texts
- سال انتشار: 1403
- محل انتشار: مجله آنالیز غیر خطی و کاربردها، دوره: 15، شماره: 10
- کد COI اختصاصی: JR_IJNAA-15-10_012
- زبان مقاله: انگلیسی
- تعداد مشاهده: 196
نویسندگان
Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
چکیده
Due to the ease of writing by hand and the inherent interest in it, writing by hand is still popular among many people. Considering the digitization of today's world and the massive amount of current information on paper, there is a need for a system to convert handwriting into its digital form to speed up access to information and reduce storage space. According to the research carried out in this field, recognizing Persian handwritten texts remains a relatively difficult issue due to the complex and irregular nature of writing and the diversity of people's handwriting. This research introduces a novel method to recognize handwritten texts at the sentence level. To use word recognition methods in sentence recognition, segmentation techniques are needed to separate the words in the sentence. The segmentation algorithm in handwritten texts is inefficient due to overlapping words. Since Recurrent Neural Networks (RNN) were a turning point in the recognition of correct writing, in this article, by removing the segmentation step, a new architecture, an RNN combined with a Gated Multi-scale Convolutional Neural Network (GMCNN), is introduced in order to recognize handwritten sentences. Using the proposed architecture, recognizing Persian handwritten sentences in the Sadri dataset has a character error rate of ۲.۹۹%, a word error rate of ۶.۶۷%, and a sentence error rate of ۳۶.۸۷%. For further evaluation, the proposed method was also evaluated on IAM and Washington datasets. The results show that the proposed method outperforms other known algorithms.کلیدواژه ها
Handwritten text recognition, Convolutional Neural Network, Recurrent Neural Network, Connectionist temporal classifierاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.