On two convex variational models and their iterative solutions for selective segmentation of images with intensity inhomogeneity

  • سال انتشار: 1401
  • محل انتشار: مجله ریاضیات محاسباتی و مدلسازی کامپیوتری با کاربردها، دوره: 1، شماره: 2
  • کد COI اختصاصی: JR_CMCMA-1-2_009
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 157
دانلود فایل این مقاله

نویسندگان

Liam Burrows

Centre for Mathematical Imaging Techniques and Department of Mathematical Sciences, University of Liverpool, Liverpool L۱۹ ۷ZL, United Kingdom.

Ke Chen

Department of Mathematical Sciences, University of Liverpool, Liverpool, UK

Francesco Torella

Liverpool Vascular & Endovascular Service, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, L۷ ۸XP, United Kingdom

چکیده

Treating images as functions and using variational calculus,mathematical imaging offers to design novel and continuous methods, outperforming traditional methods based on matrices, for modelling real life tasks in image processing.Image segmentation is one of such fundamental tasks  as  many application areas demand a reliable segmentation method. Developing reliable selective segmentation algorithms isparticularly important in relation to training data preparation in modern machine learning as accurately isolating a specific object in an image with minimal user input is a valuable tool. When an image's intensity is consisted of mainly piecewise constants, convex models are available.Different from previous works, this paperproposes two convex models that are capable of segmenting local features defined by geometric constraints for images having intensity inhomogeneity.Our new, local, selective and convex variants are extended from the non-convex Mumford-Shah model intended for global segmentation.They have fundamentally improved on previous selective models that assume intensity  of piecewise constants. Comparisons with related models are conducted to illustrate the advantages of  our new models.

کلیدواژه ها

Variational calculus, Inverse problems, image segmentation, Mumford-Shah, Intensity inhomogeneity, Geometric constraints, iterative methods

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.