Assessing The Impact Of CNN Auto Encoder-Based Image Denoising On Image Classification Tasks

  • سال انتشار: 1403
  • محل انتشار: سیزدهمین کنفرانس بین المللی فناوری های نوآورانه در زمینه علوم، مهندسی و تکنولوژی
  • کد COI اختصاصی: TETSCONF13_034
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 271
دانلود فایل این مقاله

نویسندگان

Mohsen Hami

Bachelor's degree holder in Computer Engineering from Bu-Ali Sina University, Iran

Mahdi JameBozorg

undergraduate student in Computer Engineering at Bu-Ali Sina University, Iran

چکیده

< p> Images captured from the real world are often affected by different types of noise, which can significantly impact the performance of Computer Vision systems and the quality of visual data. This study presents a novel approach for defect detection in casting product noisy images, specifically focusing on submersible pump impellers. The methodology involves utilizing deep learning models such as VGG۱۶, InceptionV۳, and other models in both the spatial and frequency domains to identify noise types and defect status. The research process begins with preprocessing images, followed by applying denoising techniques tailored to specific noise categories. The goal is to enhance the accuracy and robustness of defect detection by integrating noise detection and denoising into the classification pipeline. The study achieved remarkable results using VGG۱۶ for noise type classification in the frequency domain, achieving an accuracy of over ۹۹%. Removal of salt and pepper noise resulted in an average SSIM of ۸۷.۹, while Gaussian noise removal had an average SSIM of ۶۴.۰, and periodic noise removal yielded an average SSIM of ۸۱.۶. This comprehensive approach showcases the effectiveness of the deep AutoEncoder model and median filter, for denoising strategies in real-world industrial applications. Finally, our study reports significant improvements in binary classification accuracy for defect detection compared to previous methods. For the VGG۱۶ classifier, accuracy increased from ۹۴.۶% to ۹۷.۰%, demonstrating the effectiveness of the proposed noise detection and denoising approach. Similarly, for the InceptionV۳ classifier, accuracy improved from ۸۴.۷% to ۹۰.۰%, further validating the benefits of integrating noise analysis into the classification pipeline.< /p>

کلیدواژه ها

Image denoising, CNN AutoEncoder, Image classification, Transfer learning, industrial defect inspection

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.