Modeling the biomass pelleting process using artificial neural network

  • سال انتشار: 1391
  • محل انتشار: همایش بین المللی بحران های زیست محیطی ایران و راهکارهای بهبود آن
  • کد COI اختصاصی: ICECS01_069
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1267
دانلود فایل این مقاله

نویسندگان

Abedin Zafari

Graduate student of department of Agrotechnology, college of Abouraihan, University of Tehran.

Mohammad Hossein Kianmehr

Associate professor of department of Agrotechnology, college of Abouraihan, University of Tehran

Rahman Abdolahzadeh

Graduate student of department of Agrotechnology, college of Abouraihan, University of Tehran

چکیده

Artificial neural networks are powerful tools for modeling of extrusion processes of biomass materials. In order to study the pelleting process, composted municipal solid waste (MSW) pellets were produced under controlled conditions. The aims of the study were to investigate how the extrusion parameters affect density of the formed pellets and to explain the application of artificial neural networks for density prediction. The effects of independent variables, including the raw material moisture content (35 to 45% (wet basis)), particles size (0.3 to 1.5 mm), speed of piston (2 to 10 mm/s), and die length (8 to 12 mm) on pellet density, were determined. The results showed that four layers perceptron network with training algorithm of back propagation, hyperbolic tangential activation function, Delta training rule with ten neurons in first hidden layer and four neurons in second hidden layer had the best performance for prediction of pellet density. The minimum root mean square error (RMSE) and coefficient of determination (R2) for the multilayer perceptron (MLP) network were 0.01732 and 0.972, respectively.

کلیدواژه ها

Extrusion parameters, Biomass pellet, Density, Artificial neural network

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.