A General Machine Learning Framework for Predicting the Survival of ۱۵ Years Patients with Brain Stroke

  • سال انتشار: 1403
  • محل انتشار: اولین کنفرانس بین المللی دوسالانه هوش مصنوعی و علوم داده
  • کد COI اختصاصی: DSAI01_039
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 178
دانلود فایل این مقاله

نویسندگان

Solmaz Norouzi

Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Mohammad Asghari Jafarabadi

Cabrini Research, Cabrini Health, VIC ۳۱۴۴, Australia

Ebrahim Hajizadeh

School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC ۳۰۰۴, Melbourne Australia

چکیده

The objective of our study was to compare different machine learning and Cox models for accurately predicting mortality and survival in brain stroke patients. Brain stroke is known as one of the main causes of death worldwide. Additionally, we sought to identify the key variables that contribute to the precise prediction and classification of patients. To achieve this objective, we conducted a study using machine learning techniques and Cox on data from Ardabil, Iran, spanning from ۲۰۰۸ to ۲۰۲۳. Survival analysis, which involves modeling time-to-event data, was employed in our study. Seven algorithms were trained using R software, and the best model was chosen for further analysis based on its diagnostic performance. K‒M survival probabilities were calculated, and log-rank tests were conducted. The results of this study demonstrate the effectiveness of ML models, particularly the LR model, in comparison to the Cox model in accurately predicting mortality and survival in brain stroke patients over extended periods of ۱۵ years. With a high accuracy (۸۶.۳%) and substantial AUC of ۹۱% (۹۵% CI ۰.۸۳ - ۰.۹۸), this model is reliable for long-term survival analysis. The identification of common risk factors such as age, sex, cerebrovascular accident type (ischemic), history of cerebrovascular accident (yes), job, and physical activity. Provides valuable insights for clinicians in risk assessment. These findings contribute to the advancement of personalized care strategies and highlight the potential of ML in enhancing prognostic precision for brain stroke patients.

کلیدواژه ها

Survival, brain stroke, prediction, machine learning algorithms

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.