Development of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data

  • سال انتشار: 1391
  • محل انتشار: دوازدهمین کنفرانس بین المللی مهندسی حمل و نقل و ترافیک
  • کد COI اختصاصی: TTC12_109
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1519
دانلود فایل این مقاله

نویسندگان

Seyed Ahad Beykaei

PhD Candidate, Civil Engineering Department, University of New Brunswick, Canada

Ming Zhong

Associate Professor, PhD, P.Eng, Civil Engineering Department, University of New Brunswick, Canada

Sajad Shiravi

Master of Science Student, Civil Engineering Department,University of New Brunswick, Canada

Yun Zhang

Professor, PhD, Civil Engineering Department, Geomatics and Geodesy Department, University of New Brunswick, Canada

چکیده

Lacks of detailed land use (LU) information and of efficient data gathering methods have made modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to extract residential LU at a fine spatial level parcel through morphological analysis. First, a novel hybrid pixeland object-based land cover (LC) classification system, coupled with a sophisticated GIS post-classification correction process, is developed to extract land cover, including vegetation, parking lot, and bare soil, required for LU classification. The land cover classification system developed results in an overall accuracy of 96.4%. Residential LUs are then extracted by examining the morphological properties of individual parcels (which are derived from RS and geographic vector data) using a binary logistic model, which results in an overall accuracy of 97.5%. The above results show that the LU classification expert system developed can classify and then divide large zones with mixed LUs into single-LU subzones with a high accuracy. Therefore, it has a significant value to address several persistent issues caused by using large zones in urban modeling, such as intra-zonal travel and mixed-LU zones.

کلیدواژه ها

Land Use Classification, Land Cover Classification, Remote Sensing,Morphological Analysis

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.