CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Leveraging Transfer Learning for High-Accuracy Breast CancerClassification f rom Histopathological Images

عنوان مقاله: Leveraging Transfer Learning for High-Accuracy Breast CancerClassification f rom Histopathological Images
شناسه ملی مقاله: EECMAI06_037
منتشر شده در ششمین کنفرانس بین المللی مهندسی برق، کامپیوتر، مکانیک و هوش مصنوعی در سال 1403
مشخصات نویسندگان مقاله:

Amir Mohammad Sharafaddini - Department of Computer Science, Shahid Bahonar University of Kerman, Kerman,Box No. ۷۶۱۳۵-۱۳۳, Kerman, Iran.
Najme Mansouri - Department of Computer Science, Shahid Bahonar University of Kerman, Kerman,Box No. ۷۶۱۳۵-۱۳۳, Kerman, Iran

خلاصه مقاله:
Early detection of breast cancer remains an important global health concern. Inthis paper, we present a novel method for classifying breast cancer usinghistopathological images from the BreakHis dataset at ۴۰۰X resolution. Weextract high-level features capturing malignancy patterns using VGG۱۹ andDenseNet۲۰۱. For final classification, these features are concatenated and fed intoan Artificial Neural Network (ANN), which achieves an impressive accuracy of۹۹%. The high accuracy of our methodology demonstrates its potential as aneffective diagnostic tool in the digital pathology era.

کلمات کلیدی:
Breast cancer, Breakhsi Dataset, Transfer Learning, VGG۱۹,DenseNet۲۰

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/2003979/