Convolutional neural network-based high capacity predictor estimation for reversible data embedding in cloud network

  • سال انتشار: 1403
  • محل انتشار: مجله روشهای محاسباتی برای معادلات دیفرانسیل، دوره: 12، شماره: 3
  • کد COI اختصاصی: JR_CMDE-12-3_012
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 124
دانلود فایل این مقاله

نویسندگان

Prasad CN

Research Scholar, Department of Computer Science, Chirashree Institute of Research and Development (CIRD), University of Mysore, Karnataka, India.

R Suchithra

Research Scholar, Department of Computer Science, Chirashree Institute of Research and Development (CIRD), University of Mysore, Karnataka, India.

چکیده

This paper proposes a reversible data embedding algorithm in encrypted images of cloud storage where the embedding was performed by detecting a predictor that provides a maximum embedding rate. Initially, the scheme generates trail data which are embedded using the prediction error expansion in the encrypted training images to obtain the embedding rate of a predictor. The process is repeated for different predictors from which the predictor that offers the maximum embedding rate is estimated. Using the estimated predictor as the label the Convolutional neural network (CNN) model is trained with the encrypted images. The trained CNN model is used to estimate the best predictor that provides the maximum embedding rate. The estimation of the best predictor from the test image does not use the trail data embedding process. The evaluation of proposed reversible data hiding uses the datasets namely BossBase and BOWS-۲ with the metrics such as embedding rate, SSIM, and PSNR. The proposed predictor classification was evaluated with the metrics such as classification accuracy, recall, and precision. The predictor classification provides an accuracy, recall, and precision of ۹۲.۶۳\%, ۹۱.۷۳\%, and ۹۰.۱۳\% respectively. The reversible data hiding using the proposed predictor selection approach provides an embedding rate of ۱.۹۵۵ bpp with a PSNR and SSIM of ۵۵.۵۸dB and ۰.۹۹۱۳ respectively.

کلیدواژه ها

Reversible data hiding, image encryption, Prediction error expansion, Convolutional neural network, Embedding capacity

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.