Application of Machine Learning Techniques in Slope Stability Analysis: A Comprehensive Overview

  • سال انتشار: 1403
  • محل انتشار: مجله معدن و محیط زیست، دوره: 15، شماره: 3
  • کد COI اختصاصی: JR_JMAE-15-3_006
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 214
دانلود فایل این مقاله

نویسندگان

Arun Sahoo

Department of Mining Engineering, National Institute of Technology, Rourkela, India

Debi Tripathy

Department of Mining Engineering, National Institute of Technology, Rourkela, India

Singam Jayanthu

Department of Mining Engineering, National Institute of Technology, Rourkela, India

چکیده

The mining industry needs to accept new-age autonomous technologies and intelligent systems to stay up with the modernization of technology, to benefit the shake of investors and stakeholders, and most significantly, for the nation, and to protect health and safety. An essential part of geo-technical engineering is doing slope stability analysis to determine the likelihood of slope failure and how to prevent it. A reliable, cost-effective, and generally applicable technique for evaluating slope stability is urgently needed. Numerous research studies have been conducted, each employing a unique strategy. An alternate method that uses machine learning (ML) techniques is to study the relationship between stability conditions and slope characteristics by analyzing the data collected from slope monitoring and testing. This paper is an attempt by the authors to comprehensively review the literature on using the ML techniques in slope stability analysis. It was found that most researchers relied on data-driven approaches with limited input variables, and it was also verified that the ML techniques could be utilized effectively to predict slope failure analysis. SVM and RF were the most popular types of ML models being used. RMSE and AUC were used extensively in assessing the performance of the ML models.

کلیدواژه ها

Slope Stability, Factor of Safety, Machine Learning models, Support Vector Machine, Random Forest

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.