Numerical methods based on spline quasi-interpolation operators for integro-differential equations

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 87

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-10-4_001

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

In this paper, we propose collocation and Kantorovich methods based on spline quasi-interpolants defined on a bounded interval  to solve numerically a class of Fredholm integro-differential equations. We describe the computational aspects for calculating the approximate solutions and  give theoretical results corresponding to the convergence order of each method in terms of the degree of the considered spline quasi-interpolant. Finally, we provide some numerical tests that confirm the theoretical results and prove the efficiency of the proposed methods.

نویسندگان

Chafik Allouch

University Mohammed I. FPN. MSC Team, LAMAO Laboratory, Nador, Morocco

Domingo Barrera

Department of Applied Mathematics, University of Granada, Campus de Fuentenueva s/n, ۱۸۰۷۱ Granada, Spain

Mounaim Saou

Team ANAA, ANO Laboratory , Faculty of Sciences, University Mohammed First, Oujda, Morocco

Driss Sbibih

ANO Laboratory , Faculty of Sciences, University Mohammed First, Oujda, Morocco

Mohamed Tahrichi

Team ANAA, ANO Laboratory , Faculty of Sciences, University Mohammed First, Oujda, Morocco