Numerical methods based on spline quasi-interpolation operators for integro-differential equations
محل انتشار: مجله مدلسازی ریاضی، دوره: 10، شماره: 4
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 87
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-10-4_001
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
In this paper, we propose collocation and Kantorovich methods based on spline quasi-interpolants defined on a bounded interval to solve numerically a class of Fredholm integro-differential equations. We describe the computational aspects for calculating the approximate solutions and give theoretical results corresponding to the convergence order of each method in terms of the degree of the considered spline quasi-interpolant. Finally, we provide some numerical tests that confirm the theoretical results and prove the efficiency of the proposed methods.
کلیدواژه ها:
نویسندگان
Chafik Allouch
University Mohammed I. FPN. MSC Team, LAMAO Laboratory, Nador, Morocco
Domingo Barrera
Department of Applied Mathematics, University of Granada, Campus de Fuentenueva s/n, ۱۸۰۷۱ Granada, Spain
Mounaim Saou
Team ANAA, ANO Laboratory , Faculty of Sciences, University Mohammed First, Oujda, Morocco
Driss Sbibih
ANO Laboratory , Faculty of Sciences, University Mohammed First, Oujda, Morocco
Mohamed Tahrichi
Team ANAA, ANO Laboratory , Faculty of Sciences, University Mohammed First, Oujda, Morocco