AI-enhanced flood forecasting: Harnessing upstream data for downstream protection

  • سال انتشار: 1402
  • محل انتشار: دوفصلنامه تحقیقات کاربردی در آب و فاضلاب، دوره: 10، شماره: 2
  • کد COI اختصاصی: JR_ARWW-10-2_004
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 103
دانلود فایل این مقاله

نویسندگان

Isa Ebtehaj

Department of Soils and Agri-Food Engineering, Université Laval, Québec, Canada.

Hossein Bonakdari

Department. of Civil Engineering, University of Ottawa, Ottawa, Canada.

Baram Gharabaghi

School of Engineering, University of Guelph, Guelph, Canada

چکیده

This research devised a cutting-edge artificial intelligence methodology to enhance flood forecasting in Quebec, Canada, an area frequently affected by floods. The core of this project was creating a novel artificial intelligence (AI) model (i.e., Generalized Structure of Group Method of Data Handling) dedicated to the early detection of potential flood events. Utilizing data from two key hydrometric stations, Saint-Charles and Huron, located within the region, the study aggregated data from ۱۵-minute intervals into comprehensive hourly averages. An initial analysis sought to understand the relationship between river flow rates and the environmental factors of temperature and precipitation upstream and downstream. The investigation uncovered intricate relationships among these factors, presenting challenges in accurately predicting floods. To address this, a specialized AI model was developed to translate the flow data from the Huron station to predict potential flooding at the Saint-Charles station. This model, leveraging ۴۸-hour lag data from upstream, was designed to forecast flood events at the Saint-Charles station with lead times ranging from one to eighteen hours. The model demonstrated significant predictive accuracy, with a correlation coefficient surpassing ۰.۹. Consequently, this innovative AI model emerges as a promising tool for improving Quebec's flood prediction and early-warning systems.

کلیدواژه ها

Artificial intelligence, flood prediction, Predictive Analytics, Quebec, Water resource management

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.