Empirical Mode Decomposition and Optimization Assisted ANN Based Fault Classification Schemes for Series Capacitor Compensated Transmission Line
- سال انتشار: 1404
- محل انتشار: مجله بهره برداری و اتوماسیون در مهندسی برق، دوره: 13، شماره: 1
- کد COI اختصاصی: JR_JOAPE-13-1_005
- زبان مقاله: انگلیسی
- تعداد مشاهده: 174
نویسندگان
Department of Electrical Engineering, Faculty of Engineering & Technology, Annamalai University, Annamalainagar, ۶۰۸۰۰۲, Tamil Nadu, India.
Department of Electrical Engineering, Faculty of Engineering & Technology, Annamalai University, Annamalainagar, ۶۰۸۰۰۲, Tamil Nadu, India.
Department of Electrical & Electronics Engineering, Sagi Rama Krishnam Raju Engineering College Bhimavaram-۵۳۴۲۰۲, Andhra Pradesh, India
چکیده
This paper presents two intelligent classifier schemes for classifying the faults in a series capacitor compensated transmission line (SCCTL). The first proposed intelligent classifier scheme is a particle swarm optimization-assisted artificial neural network (PSO-ANN). The second, proposed one is a teaching-learning optimization-assisted artificial neural network (TLBO-ANN). For each type of fault, the ۳-phase current signals are acquired at the sending end and processed through empirical mode decomposition (EMD), to decompose into six intrinsic mode functions. The neighborhood component analysis is used to extract the best feature intrinsic mode functions. From the identified best feature intrinsic mode functions, the energy of each phase of the line is computed. The energy of each phase is fed as inputs for both PSO-ANN and TLBO-ANN classifiers. The practicability of the proposed intelligent classifier schemes has been tested on a ۵۰۰\,kV, ۵۰\,Hz, and ۳۰۰\,km long line with a midpoint series capacitor using MATLAB/Simulink Software. The results demonstrate that the classifier schemes are able to accurately classify faults in less than a half-cycle. Furthermore, the efficacy of the proposed intelligent classifier schemes has been evaluated using Performance Indices including Kappa Statistics, Mean Absolute Error, Root Mean Square Error, Precision, Recall, F-measure, and Receiver Operating Characteristics. From the results of Performance Indices, it is concluded that the proposed TLBO-based artificial neural network classifier outperforms the PSO-based artificial neural network classifier. Finally, the efficacies of proposed intelligent classifier schemes are compared to existing approaches.کلیدواژه ها
Artificial Intelligence, Particle swarm optimization-assisted artificial neural network, Teaching-learning-optimization-assisted artificial neural network, Power System Faults, Identification, Series capacitor compensation line, Signal Processing, Empirical mode decompositionاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.