CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

NE-GCN: Advancing Knowledge Graph Link Prediction with Node۲vec-Enhanced Graph Convolutional Networks

عنوان مقاله: NE-GCN: Advancing Knowledge Graph Link Prediction with Node۲vec-Enhanced Graph Convolutional Networks
شناسه ملی مقاله: CSCG05_133
منتشر شده در پنجمین کنفرانس بین المللی محاسبات نرم در سال 1402
مشخصات نویسندگان مقاله:

Mohammadreza Ghaffarian - School of Engineering Science, University of Tehran, Tehran, Iran;
Rooholah Abedian - School of Engineering Science, University of Tehran, Tehran, Iran
Ali Moeini - School of Engineering Science, University of Tehran, Tehran, Iran

خلاصه مقاله:
Knowledge graphs (KGs) play a vital role in enhancing search results and recommendationsystems. With the rapid increase in the size of the KGs, they are becoming inaccuracy andincomplete. This problem can be solved by the knowledge graph completion methods. In this paperwe use a novel method for knowledge graph link prediction named Node۲vec Enhanced GraphConvolutional Network (NE-GCN), for computing pairwise occurrences of entity-relation pairs inthe dataset to construct a joint learning model. Given a knowledge graph, NE-GCN constructs asingle graph considering entities and relations as individual nodes. NE-GCN then computesweights for edges among nodes based on the pairwise occurrence of entities and relations. Next,uses Graph Convolution neural Network (GCN) to update vector representations for entity andrelation nodes. This work opens up new possibilities for graph-based learning models andrepresents a major leap in the field.

کلمات کلیدی:
Knowledge graph, Linkprediction, Node۲vec, Graphconvolutional network

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1966989/