Intelligent Control Methodology for Smart Highway Bridge Structures Using Optimal Replicator Dynamic Controller

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 45

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-9-1_001

تاریخ نمایه سازی: 2 اردیبهشت 1403

چکیده مقاله:

Control algorithms are an essential part of effective semi-active vibration control systems used for the protection of large structures under dynamic loading. Adaptive control algorithms, which are data-driven methods, have recently been developed to replace model-based control algorithms, thus improving efficiency. The dynamic parameters of semi-actively controlled infrastructures will change after significant vibration loading. As a result, these structures require real-time, effective control actions in response to changing conditions, which classical controllers are unable to provide. To improve the efficiency of the semi-active controller, the optimal control algorithm was developed in this study. The algorithm is the integration of the replicator dynamics with an improved non-dominated sorting genetic algorithm (NSGA), which is NSGA-II. The optimal parameters of replicator dynamics (total resources, growth rate, and fitness function), which represent the behavior of the actuators, were obtained through a multi-objective optimization process. The new control system was then used to reduce the vibrations of the isolated highway bridge, which is equipped with semi-active control devices known as MR dampers. Moreover, the current study improved the performance of the structural control system with minimum energy consumption by assigning a specific growth rate to each control device. In order to reduce the vibrations of the highway bridge, the results show that the performance of the optimal replicator controller is better than the performance of the classical control algorithms. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۳-۰۹-۰۱-۰۱ Full Text: PDF

نویسندگان

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Agrawal, A., Tan, P., Nagarajaiah, S., & Zhang, J. (2009). ...
  • Tan, P., & Agrawal, A. K. (2009). Benchmark structural control ...
  • Nagarajaiah, S., Narasimhan, S., Agrawal, A., & Tan, P. (2009). ...
  • Javadinasab Hormozabad, S., & Gutierrez Soto, M. (2021). Load balancing ...
  • Camara, A. (2018). Seismic behavior of cable‒stayed bridges: a review. ...
  • Dolce, M., Cardone, D., Ponzo, F. C., & Valente, C. ...
  • Soong, T. T., & Costantinou, M. C. (Eds.). (2014). Passive ...
  • Chen, Z., Fang, H., Han, Z., & Sun, S. (2019). ...
  • Li, J., Zhang, H., Chen, S., & Zhu, D. (2020). ...
  • Alizadeh, H., & Hosseni Lavassani, S. H. (2021). Flutter Control ...
  • Bharathi Priya C., & Gopalakrishnan, N. (2022). Emotional Learning based ...
  • Kemerli, M., Şahin, Ö., Yazıcı, İ., Çağlar, N., & Engin, ...
  • Jian, L., Song, F., & Huang, Y. (2020). Research on ...
  • Javadinasab H., S., & Ghorbani-Tanha, A. K. (2020). Semi-active fuzzy ...
  • Bathaei, A., & Zahrai, S. M. (2022). Compensating time delay ...
  • Saeed, M. U., Sun, Z., & Elias, S. (2022). Research ...
  • Fisco, N. R., & Adeli, H. (2011). Smart structures: Part ...
  • Alkhatib, R., & Golnaraghi, M. F. (2003). Active structural vibration ...
  • Gutierrez Soto, M., & Adeli, H. (2017). Recent advances in ...
  • Gutierrez Soto, M. (2018). Bio-inspired hybrid vibration control methodology for ...
  • Gutierrez Soto, M., & Adeli, H. (2018). Vibration control of ...
  • Gutierrez Soto, M., & Adeli, H. (2017). Many-objective control optimization ...
  • Soto, G., & Adeli, H. (2017). Multi-agent replicator controller for ...
  • Gutierrez Soto, M. (2017). Multi-agent Replicator Control Methodologies for Sustainable ...
  • Gutierrez Soto, M., & Adeli, H. (2019). Semi-active vibration control ...
  • Ramezani, M., Bathaei, A., & Zahrai, S. M. (2019). Comparing ...
  • Bathaei, A., & Zahrai, S. M. (2022). Improving semi-active vibration ...
  • Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). ...
  • Branke, J., Kaußler, T., & Schmeck, H. (2001). Guidance in ...
  • Deb, K. (1999). Evolutionary algorithms for multi-criterion optimization in engineering ...
  • Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated ...
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). ...
  • Quijano, N., Ocampo-Martinez, C., Barreiro-Gomez, J., Obando, G., Pantoja, A., ...
  • Song, G., Sethi, V., & Li, H. N. (2006). Vibration ...
  • Gunantara, N. (2018). A review of multi-objective optimization: Methods and ...
  • Yusoff, Y., Ngadiman, M. S., & Zain, A. M. (2011). ...
  • Makris, N., & Zhang, J. (2004). Seismic response analysis of ...
  • نمایش کامل مراجع