تخمین با سرآمد پایلوت کم کانال سیستم MIMO انبوه با کمک سطح بازتابی هوشمند بر اساس یادگیری عمیق
- سال انتشار: 1402
- محل انتشار: بیستمین سمپوزیوم بین المللی هوش مصنوعی و پردازش سیگنال
- کد COI اختصاصی: CDI20_013
- زبان مقاله: فارسی
- تعداد مشاهده: 202
نویسندگان
دانشجوی کارشناسی ارشد گروه مهندسی برق دانشگاه شهید مدنی آذربایجان
دانشیار گروه مهندسی برق دانشگاه شهید مدنی آذربایجان
استادیار گروه مهندسی برق دانشگاه شهید مدنی آذربایجان
چکیده
یکی از موضوعات رایج در تحقیقات مرتبط با سیستم های مخابراتی، تخمین کانال می باشد. اخیرا تخمین کانال سیستم MIMO انبوه چندکاربره مبتنی بر یادگیری عمیق در حضور سطح بازتابی هوشمند (IRS) ارائه شده است که در آن خطای باقیمانده از تخمین گر کلاسیک LS با استفاده از مدلسازی به روش حذف نویز تصویر و پیاده سازی با یادگیری عمیق کاهش داده شده است. در حالتی که تعداد عناصر IRS بیشتر باشد مشکل سرآمد پایلوت در روش فوق بوجود می آید. جهت حل مشکل فوق، در این مقاله با فرض وجود تزویج بین عناصر IRS، هنگام تخمین کانال، با غیر فعال کردن برخی عناصر IRS، تنها پایلوت متناظر با عناصر فعال IRS ارسال شده و کانال متناظر با روش LS تخمین زده می شود. با توجه به وجود اثر تزویج، بین کانال های متناظر با عناصر مجاور IRS همبستگی وجود دارد. بر این اساس با روش درونیابی خطی، تخمین اولیه کانال متناظر با عناصر غیرفعال را بدست می آوریم. ماتریس کانال حاصله تخمین اولیه از ماتریس کانال می باشد، برای بهبود بیشتر عملکرد تخمین از شبکه یادگیری عمیق CDRN استفاده می کنیم. نتایج شبیه سازی ها حاکی از بهبود عملکرد روش پیشنهادی نسبت به روش مرجع از دیدگاه کاهش سرآمد پایلوت و خطای تخمین است.کلیدواژه ها
سیستم های چند ورودی چند خروجی، تخمین کانال، سطح بازتابی هوشمند، یادگیری عمیق، اثر تزویجمقالات مرتبط جدید
- بررسی عددی تاثیر لایه مرزی بر عملکرد انتقال حرارت و افت فشار در مبدل های حرارتی
- Quantitative Insights into G Protein Signaling: A Review of Recent SPR Methodologies and Discoveries
- استفاده از دو الگوریتم رمزنگاری AES و DES در راستای افزایش امنیت اطلاعات در شبکه های حسگر بیسیم
- پیشنهاد الگوریتم های بهینه سازی برای طراحی گراف های پیچیده با استفاده از شبکه های مولد (GAN)
- طراحی و ارزیابی مدل های تحلیلی برای تسریع فرایند های تصمیم گیری در تحلیل داده های بزرگ به کمک تکنیک یادگیری ماشین
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.