Enhancing Intelligent Traffic Management: Unleashing the Full Potential of Machine Learning Methods in the Internet of Things (IoT)
- سال انتشار: 1402
- محل انتشار: هفتمین همایش بین المللی مهندسی فناوری اطلاعات، کامپیوتر و مخابرات ایران
- کد COI اختصاصی: ICTBC07_038
- زبان مقاله: انگلیسی
- تعداد مشاهده: 224
نویسندگان
Bachelor student of Computer Engineering, Pole Dokhtar Higher Education Institute, Lorestan, Iran
Master of Lorestan University, PHD in Computer Software, Lorestan, Iran
Department of Computer Scince, PHD in Computer Software, Najaf Abad, Isfahan, Iran
چکیده
This academic article explores the potential of machine learning methods in enhancing intelligent traffic management within the context of the Internet of Things (IoT). Traffic management systems face numerous challenges due to the increasing complexity of traffic patterns and the growing number of vehicles on the road. These challenges include congestion, safety concerns, inefficient resource allocation, and the need for real-time decision-making. Traditional traffic management approaches often struggle to address these challenges effectively.The article highlights the importance of leveraging the power of data analysis, pattern recognition, and real-time decision-making through machine learning techniques in traffic management. By integrating IoT devices into traffic management systems, real-time data can be collected from various sources such as traffic cameras, vehicle sensors, and weather monitoring systems. This extensive and diverse data can then be analyzed using machine learning algorithms to extract valuable insights and make informed decisions.The article discusses the potential applications of machine learning in traffic management, including traffic sign recognition, traffic flow prediction, traffic signal control, anomaly detection, and connectivity and coordination. It provides an overview of existing research in these areas, highlighting the effectiveness of machine learning techniques in addressing the challenges faced by traffic management systems.Overall, this article emphasizes the need to explore and leverage the full potential of machine learning methods in the IoT to enhance intelligent traffic management. By doing so, more efficient and safer transportation systems can be developed to address the increasing challenges of traffic congestion, resource allocation, and road safety.کلیدواژه ها
Intelligent traffic management, Machine learning, Internet of Things (IoT), Traffic flow prediction, Traffic signal controlمقالات مرتبط جدید
- تاثیر میکروبهای مقاوم به آنتی بیوتیک در زنجیرههای آبی شهری و راهکارهای کنترلی
- مدل سازی ساختاری عوامل اجتماعی و فردی موثر بر روی فاکتور کشف خطر با نقش میانجی رضایت شغلی در صنعت پتروشیمی
- تحلیل و طراحی سیستمهای هوشمند در ساختمان های پایدار
- طراحی و پیاده سازی میکسر صنعتی هوشمند با امکان افزودن خودکار مواد روغنی و کنترل فیزیکوشیمیایی محصول
- مدیریت و تعیین میزان برداشت بهینه از آبخوانها
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.