عنوان مقاله：
Structure－Based Virtual Screening of Cinnamic Acid Analogs Against RIPKr ：Implications for Anti－Inflammatory Drug Discovery

> محل انتشار:
> مجله بيوشيمى پزشكى, دوره 11, شماره 2 (سال: 1402)
> تعداد صفحات اصل مقاله: 9
> نويسندگان:
> Elham Khoshbin
> Seyed Mohamad Soroosh Rahmani-Abidar
> Shadi Moradi
> Amir Taherkhani
> Hamed Karkehabadi

خلاصه مقاله：
Background：A common oral inflammatory disease known as apical periodontitis（AP）is caused by the intrusion of microorganisms into the dental pulp， resulting in an inflammatory response and bone degradation in periapical tissues．A growing body of evidence indicates that the receptor－interacting serine－threonine kinase $\mu($ RIPK μ ）is closely associated with AP．Objectives：This study sought to address the requirement for effective RIPKr inhibitors by examining the potential of cinnamic acid natural metabolites capable of inhibiting RIPKr．Methods：The binding affinity of $r \cdot$ cinnamic acids to the RIPK μ active site was evaluated by using AutoDock f．＊software．The most favorable scores were assigned to the highest－ranking cinnamic acids based on their Δ Gbinding values to the RIPKr catalytic domain．A $1 \cdots$－nanosecond（ns）computer simulation was performed using molecular dynamics for the most efficacious inhibitor of RIPKr，and the findings were contrasted with those obtained for free RIPKr．The Discovery Studio Visualizer tool was employed to showcase the interactions between the RIPK r active site and the highest－ranking metabolites．Results：The binding affinity of cynarin，rosmarinic acid （RosA），and chlorogenic acid（CGA）to the RIPKr active site was noteworthy，as the Δ Gbinding values were＜－1 • kcal／mol．Furthermore，cynarin exhibited inhibition constant values at the picomolar range．Upon complexation with cynarin，the RIPKr conformation attained stability after approximately $r \Delta n s$ of simulation．Conclusion：In general，cynarin，RosA，and CGA have the potential to be therapeutically beneficial in treating AP due to ．their ability to inhibit RIPK μ

