Predictive Modeling and Non-linear Optimization Techniques for Composite Materials Design

  • سال انتشار: 1401
  • محل انتشار: فصلنامه کامپوزیت ها و ترکیبات، دوره: 4، شماره: 12
  • کد COI اختصاصی: JR_JRCC-4-12_006
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 131
دانلود فایل این مقاله

نویسندگان

Wesley A. Hermes

Colorado State University Pueblo ۲۲۰۰ Bonforte Blvd, Pueblo, CO ۸۱۰۰۱, USA

Ebisa Wollega

Colorado State University Pueblo ۲۲۰۰ Bonforte Blvd, Pueblo, CO ۸۱۰۰۱, USA

M. Rashad Islam

Colorado State University Pueblo

چکیده

With the rise in the use of composite materials for product design, research has been performed in determining the optimal way to produce materials for given desired outputs. As of now response surface methodology and the Taguchi method are the front running methods for optimizing material production methods at the design level. This research investigates why these methods are not a one size fits all solution to optimizing composite materials production for material properties. It proposes utilizing predictive modeling and non-linear optimization techniques from historical manufacturing data of a non-highly controlled manufacturing process. The method is examined with the manufacturing and testing data of a local concrete product manufacturer. The models and optimization methods are validated with residual values to the true data and sensitivity analysis of the problem. The initial testing of the method offers promise to companies who have not found Taguchi or surface response methodology, applicable to their specific business solutions.With the rise in the use of composite materials for product design, research has been performed in determining the optimal way to produce materials for given desired outputs. As of now response surface methodology and the Taguchi method are the front running methods for optimizing material production methods at the design level. This research investigates why these methods are not a one size fits all solution to optimizing composite materials production for material properties. It proposes utilizing predictive modeling and non-linear optimization techniques from historical manufacturing data of a non-highly controlled manufacturing process. The method is examined with the manufacturing and testing data of a local concrete product manufacturer. The models and optimization methods are validated with residual values to the true data and sensitivity analysis of the problem. The initial testing of the method offers promise to companies who have not found Taguchi or surface response methodology, applicable to their specific business solutions.

کلیدواژه ها

Composite, Design, Modelling, Optimization, Taguchi, Sensitivity

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.