Diabetic Retinopathy State Diagnosis based on Deep Elman Neural Network

  • سال انتشار: 1402
  • محل انتشار: چهارمین کنفرانس بین المللی یافته های پژوهشی در مهندسی برق، کامپیوتر و مکانیک
  • کد COI اختصاصی: ISCEL04_012
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 177
دانلود فایل این مقاله

نویسندگان

Bita Noori

Electrical and Computer Engineering Faculty, Tabriz, Iran,

Pedram Salehpoor

Electrical and Computer Engineering Faculty, Tabriz, Iran,

Hadi S. Aghdasi

Electrical and Computer Engineering Faculty, Tabriz, Iran,

چکیده

One of the main problems in medical science is the absence of recognition, detection and prediction of different illness for working precisely and practical. Diabetes is one of the illness which caught today’s people due to disregard environmental issues. Diabetes have several states which one of them is retinopathy that losing eyesight is one the most important risk of it. Microaneurysm are red spots which are the primary symptoms occurred in retina. The most important problem is early detection of retinopathy for protecting eyesight and consequences of this disease for some time delay. This research proposed a new approach for diabetic retinopathy recognition and detection by using hybrid methods. This approach have four level. In first level, pre-processing done for probabilistic noise removal and standardization of input dataset. Then Elman Neural Network (ENN) done for image segmentation based on edge detection. In the following step, dimension reduction, feature selection and extraction done by percolation theory which features are blood vessels edges and intensity of edges. At the end, combination method of SNN and percolation theory done for detection the area of retinopathy. Results show that proposed method have the better accuracy in comparison to others.

کلیدواژه ها

Retinopathy, Image Segmentation, Edge Detection, Elman Neural Network (ENN), Percolation Theory

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.