Artificial Neural Network in Autism Spectrum Disorder Diagnosis Based on Quantitative Electroencephalography
- سال انتشار: 1402
- محل انتشار: علوم اعصاب کاسپین، دوره: 10، شماره: 1
- کد COI اختصاصی: JR_CJNS-10-1_002
- زبان مقاله: انگلیسی
- تعداد مشاهده: 155
نویسندگان
Exceptional Child Psychology and Education, University of Guilan, Rasht, Iran.
Department of Psychology, Faculty of Literature and Humanities, University of Guilan, Rasht, Iran.
Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Guilan, Rasht, Iran.
Department of Psychology, University of Guilan, Rasht, Iran
Biomedical Engineering, Imam Reza International University, Mashhad, Razavi Khorasan, Iran.
چکیده
Background: Early diagnosis of autism spectrum disorder (ASD) is essential because the challenges that ASD children and their parents face will be managed better by developmental and behavioral intervention at earlier ages. Objectives: This study aims to diagnose ASD based on electroencephalography (EEG) with the help of an artificial neural network (ANN). Materials & Methods: The statistical population includes all girls and boys aged ۳ to ۷ years referred to child psychiatry and neurodevelopmental centers in Mashhad City, Iran. A total of ۳۴ children with ASD (۵ girls and ۲۹ boys) and ۱۱ children without any neurodevelopmental disorders (۸ girls and ۳ boys) participated in this study. EEG signals were recorded through C۳ and C۴ channels based on the standard ۱۰-۲۰ system. With the help of programming codes, the absolute power of the frequency bands (delta, theta, alpha, mu rhythm, beta, and gamma) was extracted from the brain signals of the samples. Results: This study showed a significant difference in mu rhythm between the two groups. The classification result based on discriminant function analysis in two groups gave a sensitivity of ۶۷.۶% in the third stage of EEG recording. Seven band frequencies were used as features for ANN inputs. The results indicated that the radial basis function network with ۴۰۲ neurons in the hidden layer accurately diagnosed and classified the EEG signals of ASD children from non-neurodevelopmental children (mean square error=۱.۲۲۳۲۵e-۵). Conclusion: It can be concluded that band frequencies are notable features in diagnosing ASD.کلیدواژه ها
Autism spectrum disorder, Electroencephalography, Diagnosisاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.