Dynamic MLC Tracking Using ۴D Lung Tumor Motion Modelling and EPID Feedback

  • سال انتشار: 1398
  • محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 9، شماره: 4
  • کد COI اختصاصی: JR_JBPE-9-4_004
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 178
دانلود فایل این مقاله

نویسندگان

N Rostampour

Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran

K Jabbari

Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran

Sh Nabavi

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

M Mohammadi

Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, Australia.

M Esmaeili

Department of Medical Engineering, Tabriz University of Medical Sciences, Tabriz, Iran.

چکیده

Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the ۴D-CT images for ۱۰ patients. For modelling of respiratory motion, the end-exhale phase of these images has been considered as the reference and they were analyzed using neuro-fuzzy method to predict the magnitude of displacement of the lung tumor. Then, the predicted data were used to determine the leaf motion in MLC. Finally, the trained algorithm was figured out using Shaper software to show how MLCs could track the moving tumor and then imported on the Varian Linac equipped with EPID.Results: The root mean square error (RMSE) was used as a statistical criterion in order to investigate the accuracy of neuro-fuzzy performance in lung tumor prediction. The results showed that RMSE did not have a considerable variation. Also, there was a good agreement between the images obtained by EPID and Shaper for a respiratory cycle. Conclusion: The approach used in this study can track the moving tumor with MLC based on the ۴D modelling, so it can improve treatment accuracy, dose conformity and sparing of healthy tissues because of low error in margins that can be ignored. Therefore, this method can work more accurately as compared with the gating and invasive approaches using markers.

کلیدواژه ها

Lung Neoplasms, Radiotherapy, Intensity-Modulated, Fuzzy Logic

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.