Analysis of Diabetes disease using Machine Learning Techniques: A Review

  • سال انتشار: 1402
  • محل انتشار: فصلنامه مدیریت فناوری اطلاعات، دوره: 15، شماره: 4
  • کد COI اختصاصی: JR_JITM-15-4_008
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 85
دانلود فایل این مقاله

نویسندگان

G R

Research Scholar, Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, ۶۴۱۱۱۴, India.

Mary X

Associate Prof., Department of Robotics Engineering, Karunya Institute of Technology and Sciences, ۶۴۱۱۱۴, India.

George S

Prof., Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, ۶۴۱۱۱۴, India.

Sagayam K

Assistant Prof., Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, ۶۴۱۱۱۴, India.

Fernandez-Gamiz

Prof., Department of Nuclear Engineering and Fluid Mechanics, University of Basque Country, Bilbao, ۴۸۹۴۰, Spain.

Günerhan

Associate Prof., Department of Mathematics, Kafkas University, Aiken, Kars, Turkey.

Uddin

Prof., Department of Business Administration, International Islamic University, Chittagong, ۴۳۱۸, Bangladesh.

Pramanik

Associate Prof., Department of Computer Science and Engineering, Haldia Institute of Technology, India.

چکیده

Diabetes is a type of metabolic disorder with a high level of blood glucose. Due to the high blood sugar, the risk of heart-related diseases like heart attack and stroke got increased. The number of diabetic patients worldwide has increased significantly, and it is considered to be a major life-threatening disease worldwide. The diabetic disease cannot be cured but it can be controlled and managed by timely detection. Artificial Intelligence (AI) with Machine Learning (ML) empowers automatic early diabetes detection which is found to be much better than a manual method of diagnosis. At present, there are many research papers available on diabetes detection using ML techniques. This article aims to outline most of the literature related to ML techniques applied for diabetes prediction and summarize the related challenges. It also talks about the conclusions of the existing model and the benefits of the AI model. After a thorough screening method, ۷۴ articles from the Scopus and Web of Science databases are selected for this study. This review article presents a clear outlook of diabetes detection which helps the researchers work in the area of automated diabetes prediction.

کلیدواژه ها

Machine learning, diabetes, Classifiers, Prediction, Classification

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.